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Abstract - The effects of a magnetic afield are somewhat intuitive, but are nonetheless interesting to note. First, 
let us consider the effect of a magnetic field on the electron ux itself. In a system with a bat potential, the effect of 
the field would be to bend all electron trajectories to curves with some known cyclotron radius. With disorder 
present, however, the dynamics will favor some paths over others (hence the branched nature of the own). The 
competition between these dynamics for electrons in the magnetic field results in a \ratcheting" of the branches 
as the field strength is increased, rather than a continuous sweeping. Though this is difficult to convey without a 
continuous set of ux images. The shifting of branches has greater implications for the experimental situation, 
since the accessible conductance measurement depends on scattering. We can understand the correlation 
between the measured conductance and electron ux by considering classical trajectories. To decrease the 
conductance of the system, a trajectory needs to be scattered by the AFM tip and return to the QPC. In the 
absence Here we see two sets of electron ux density data, taken with the same disordered potential but at two 
differentmagnetic field values. For the top image B = 0, and for the bottom image B = 25 mT. Both data sets cover 
an area two microns long by one micron high. We see that, when the field is increased, the branches do not bend 
continuously. Rather, the branches are the same out to some distance, at which point the electrons take clearly 
distinct paths. We understand this as the effect of the magnetic field accumulating until it is suffcient to cause 
trajectories to jump from one dynamically favored branch to another. This ratcheting effect continues as the ux 
increases, resulting in a cumulative net bending of trajectories. 

We also note that ux density has shifted within the branches present, another effect that accomplishes the net 
bending caused by the magnetic field.this means that the trajectory should impinge on the AFM tip Potential at a 
right angle to the classical turning point and be scattered back along itself.  
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------------------------------------------♦------------------------------------- 

INTRODUCTION 

Time reversal invariance guarantees that the trajectory will 
follow the same branch back to the QPC that it used to get 
to the AFM. Placing the AFM over a branch ensures both a 
high density of impinging electrons and a high density of 
possible return paths into which to scatter. In the presence 
of a magnetic field, we lose the time-reversal invariance 
that we used to describe our scattering process. The 
existence of a classical trajectory from the QPC to the AFM 
no longer guarantees the existence of a return path. 

Thinking in terms of time reversal, however, points us in 
the direction of what we should instead expect to see. The 
set of trajectories that can be used to return to the QPC 
from the AFM are just those that are seen going to the 
AFM from the QPC for the opposite magnetic field. The 

conditions for a strong signal, the presence of both 
outgoing and return paths, are satisffed by those regions of 
space where these two branching patterns overlap. We 
would then predict that the signal measured with a tip scan 
would correlate to the product of the ux densities 
calculated at both signs of the magnetic field. This 
prediction is born out by simulations, This intuition implies 
a relationship that we already know to be true: the signal 
that we measure must be symmetric in magnetic field [16]. 
Changing the sign of the field merely exchanges the roles 
of outgoing and return paths. We show the results of a 
simulated AFM tip scan in the presence of magnetic field. 

REVIEW OF LITERATURE  

We can now, as earlier suggested, look at the effectthat a 
disordered potential has on the resonant cavity considered 
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in x3.2. In a cavity, we expect noticeable effects for levels 
of disorder that might not be seen in an open system at our 
length scales. The reason is that electrons confined to a 
cavity will \see" the same disorder many times as they 
bounce around. There are three things that we consider 
when we introduce disorder. First is that the resonant 
energies of the cavity will shift, and so the peaks in the 
transmission curve will move. Second, we note that the 
closed status of the cavity, especially as we approach 
marginality, is a delicate balance. Small levels of disorder 
in the cavity can easily destroy it for the reasons noted 
above. As a result, we would expect that the transmission 
of the cavity will be increased throughout the spectrum. 
Finally, the symmetry of the cavity is broken by any 
disorder. With the symmetry broken, waves can couple to a 
new class of cavity modes and we should see new peaks 
appear in the transmission spectrum. We take the same 
cavity setup used before, and introduce disorder gradually. 
An example of the resulting potential happens to the 
spectrum in a narrow band as the disorder is introduced. 
There are five steps as the disorder strength is increased, 
ending at: 05EF . Even at this level of disorder, we see that 
the extant conductance peaks are shifted and new ones 
appear. 

In addition, the whole conductance curve is raised, as the 
geometric closure of the cavity is lost.we can see what is 
happening to the wave functions at the same time; for 
comparison, we have the wave functions at the 
conductance peaks for zero disorder and for disorder at 
:05EF . Most interestingly, we see that the disorder the 
potential in our resonant cavity with a disordered 
background introduced. Because the heights of the peaks 
in the disorder are small (around 5%) compared to the 
energy of the electrons that we will send through the 
system, the grey scale color map is cut off and we don't 
see the softness of the mirror and QPC. The radius of 
curvature of the mirror is ffve correlation lengths of the 
disorder. 

MATERIAL AND METHOD  

The data are over a limited range, measuring one micron 
long by :6 microns high. In row (A), we see the ux and the 
results of a tip scan at zero magnetic fields. The 
correspondence between the two is as seen before. In (B), 
we have the ux at a magnetic field of ff:1 T. (The 
interference in the upper-right corner of the first image in 
(B) is simply the result of a branch hitting the corner of the 
grid.) In (C), we show the square root of the product of the 
two sets of data in (B), and the result of a simulated AFM 
tip scan at B = :1 T. (We have chosen the square root of 
the product so that, as we take B ! 0, we reduce to the 
image used in (A).) This tip scan correlates to the product, 
rather than to the actual ux at either field value. We ffnd the 

same tip scan data if we take B = �:1 T. The most 
interesting feature of the tip scan in (C) is isolated island of 
signal near the center of the scan where two branches 
cross one another. Has allowed our previously symmetric 
system to couple to modes with a central node. We see the 
evolution of the cavity transmission spectrum as the 
strength of the disorder is increased. In (A), we show six 
curves, the lowest (black) is for no disordered background 
and the highest (purple) is for a background at :37 meV 
(:05EF for the center of the spectrum), with even steps 
between. In (B), we show only the two extremes, and we 
have labeled the peaks. We see the shifting of peaks (e.g., 
A4 to B6), the disappearance of peaks (e.g., A3), and the 
appearance of new ones (e.g., B5) as the disorder is 
introduced. We also note the overall effect of the disorder 
to increase the transmission of the system. 

CONCLUSION  

We see the wave functions at the peaks in the 
transmission curves of (B). Comparing the two data sets, 
we note two things. First of all, looking at peaks that are 
present for both curves, the amount that a wave function 
changes is related to the height and width of the original 
transmission peak (compare A1 changing to B2 with A2 
splitting to B3 and B4). This makes sense, as narrow, high 
peaks correspond to stronger resonances of the original 
cavity, and we might expect that these will be harder to 
destroy. Second, for the wave functions that changes 
significantly and for the one that isn't present at all without 
disorder (B5 is the only completely new peak since B1 has 
simply been shifted into this energy range), the difference 
is primarily the introduction of a component with a central 
node. In the original, symmetric system, such states 
weren't allowed. 
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