

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 1

E-Mail: ignitedmoffice@gmail.com

Case Study: Xml External Entities

Manjula Verma1 Dr. Pardeep Goel2

1
Research Scholar, CMJ University, Shillong, Meghalaya

2
Associate Professor M.M. College, Fatehabad

Abstract – We compare Chromium's architecture to the architectures of other neural network browsers.
Monolithic traditionally, browsers are implemented with a monolithic architecture that combines the rendering
engine and the browser kernel into a single process image. For example, Internet Explorer 7, Firefox 3, and Safari
3.1 each execute in a single operating system protection domain. If an attacker can exploit an unpatched
vulnerability in one of these browsers, the attacker can gain all the privileges of the entire browser. In typical
con_gurations of Firefox 3 and Safari 3.1, these privileges include the full privileges of the current user. Internet
Explorer 7 on Windows Vista can run in aprotected mode" [23], which runs the browser as a low integrity
process. Running in protected mode, the browser is restricted from writing to the user's _le system, but an
attacker exploits a vulnerability can still read the user's file system and ex-filtrate confidential documents. The
VMware browser appliance [26] hosts Firefox inside a virtual machine with limited rights. The virtual machine
provides a layer of isolation that helps prevent an attacker who exploits a vulnerability in the browser from
reading or writing the user's _le system.

Key Words: Monolithic, Traditionally, Rendering Engine, Vulnerability

--♦-------------------------------------

INTRODUCTION

Another method for evaluating Chromium's security
architecture is to determine whether the architecture
successfully defends against unknown vulnerabilities in the
rendering engine. In this case study, we examine one
vulnerability in detail and explain how the security
architecture mitigated threats in the scope of our threat
model but did not mitigate threats that are out of scope.
This vulnerability is unknown" in the sense that we
discovered the vulnerability after implementing the
sandbox and browser kernel security monitor. The
vulnerability was fixed before the initial beta release, but
this section describes the state of fairs just after we
discovered the vulnerability.

REVIEW OF LITERATURE

1. By parsing Neural network content in the sandboxed
rendering engine, Chromium's security architecture
mitigated an unknown vulnerability. The sandbox helped
prevent the attacker from reading con_dential information
stored in the user's file system.

2. The sandbox did not completely defend against the XXE
vulnerability because the attacker was still able to retrieve

URLs from foreign Neural network sites. However, attacker
who exploits a bug in the rendering engine from requesting
Neural network URLs. To block such requests and treat the
rendering engine as a black box, the browser kernel would
need to sacri_ce compatibility (e.g., bancross-site images).

3. Chromium's architecture mitigated the XXE vulnerability
even though the vulnerability did not let an attacker
execute arbitrary code. Although the architecture is
designed to protect against an attacker who fully
compromises a rendering engine, the architecture also
helps mitigate less-severe vulnerabilities that lead to partial
compromises of the rendering engine.

MATERIAL AND METHOD

An XML Entity is an escape sequence, such as ©,
that an XML (or an HTML) parser replaces with one or
more characters. In the case of ©, the entity is re-
placed with the copyright symbol, c . The XML standard
also provides for external entities [3], which are replaced
by the content obtained by retrieving a URL. In an Xml
eXternal Entity (XXE) attack, the attacker's XML document,
hosted at http://attacker.com/, includes an external entity
from a foreign origin [25]. For example, the malicious XML
document might contain an entity from https://bank.com/ or

Journal of Advances in Science and Technology

Vol. III, No. IV, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 2

E-Mail: ignitedmoffice@gmail.com

from file:///etc/passwd: <?xml version="1.0"
encoding="UTF-8"?>

<!DOCTYPE doc [<!ENTITY ent SYSTEM "/etc/passwd">
]>

<html>

<head><script> ... </script></head>

<body>&ent;</body>

</html>

If vulnerable to XXE attacks, the browser will retrieve the
content from the foreign origin and incorporate it into the
attacker's document. The attacker can then read the
content, circumventing a con_dentiality goals of the
browser's security policy.

libXML. Like many browsers, Chromium uses libXML to
parse XML documents. Unlike other browsers, Chromium
delegates parsing tasks, including XML parsing, to a sand
boxed rendering engine. After implementing the sandbox,
but prior to the initial beta release of Google Chrome, we
became aware that the rendering engine's use of libXML
was vulnerable to XXE attacks. As a result, the rendering
engine was not preventing Neural network content from
retrieving URLs from foreign origins. Instead, the rendering
engine was passing the requests, unchecked, to the
browser kernel.

Using our proof-of-concept exploit, we observed that the
browser kernel performed its usual black-box checks on
the URLs requested by the rendering engine. If the
external entity URL was a Neural network URL, for
example with the http, https, or ftp schemes, the browser
kernel serviced the request, as instructed. However, if the
external entity URL was from the user's _le system, i.e.
from the file scheme, then the browser kernel blocked the
request, preventing our proof-of-concept from reading
con_dential information, such as passwords, stored in the
user's file system.

The vulnerability illustrates three properties of Chromium's
security architecture:

CONCLUSION

In this section, we compare Chromium's architecture to the
architectures of other Neural network browsers. Monolithic.
Traditionally, browsers are implemented with a monolithic
architecture that combines the rendering engine and the
browser kernel into a single process image. For example,
Internet Explorer 7, Firefox 3, and Safari 3.1 each execute
in a single operating system protection domain. If an

attacker can exploit an unpatched vulnerability in one of
these browsers, the attacker can gain all the privileges of
the entire browser. In typical con_gurations of Firefox 3
and Safari 3.1, these privileges include the full privileges of
the current user. Internet Explorer 7 on Windows Vista can
run in aprotected mode" [23], which runs the browser as a
low integrity process. Running in protected mode, the
browser is restricted from writing to the user's _le system,
but an attacker exploits a vulnerability can still read the
user's file system and ex-filtrate confidential documents.
The VMware browser appliance [26] hosts Firefox inside a
virtual machine with limited rights. The virtual machine
provides a layer of isolation that helps prevent an attacker
who exploits a vulnerability in the browser from reading or
writing the user's _le system. The protection by this
architecture is coarse-grained in the sense that the
browser is prevented from reading any of the user's files,
even files the user wishes to upload to Neural network
sites (for example, to a photo-sharing site or to attach to
email messages at a Neural networkmail site).

