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Abstract - Random matrix theory is a maturing order with decades of investigate in various Fields now 

creation to congregate. A collection of elements from the ensemble can be viewed as a swarm of 

representative points in the phase space. The statistical properties of the ensemble then depend on a 

chosen probability measure on the phase space. 

Propeties should have a Representativeness, Ergodicity. The formulation of statistical ensembles used in 

physics has now been widely adopted in other fields 
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INTRODUCTION  

Inferential statistics is used to make predictions or 
comparisons about larger group (a population) using 
information gathered about a small part of that 
population.  

Other distinctions are sometimes made between 
data types. 

• Discrete data are whole numbers, and are usually a 
count of objects. (For instance, one study might count 
how many pets different families own; it wouldn’t make 
sense to have half a goldfish, would it?) 

• Measured data, in contrast to discrete data, are 
continuous, and thus may take on any real value. (For 
example, the amount of time a group of children spent 
watching TV would be measured data, since they 
could watch any number of hours, even though their 
watching habits will probably be some multiple of 30 
minutes.) 

• Numerical data are numbers. 

• Categorical data have labels (i.e. words). (For 
example, a list of the products bought by different 
families at a grocery store would be categorical data, 
since it would go something like {milk, eggs, toilet 
paper}.) [1] 

In mathematical physics, especially as introduced into 
statistical mechanics and thermodynamics by J. 
Willard Gibbs in 1878, an ensemble (also statistical 
ensemble or thermodynamic ensemble) [2,3] is an 
idealization consisting of a large number of mental 
copies (sometimes infinitely many) of a system, 
considered all at once, each of which represents a 
possible state that the real system might be in.  

Random matrix theory is a maturing discipline with 
decades of research in multiple _elds now beginning 
to converge. Experience has shown that many exact 
formulas are available for certain matrices with real, 
complex, or quaternion entries. In random matrix 
jargon, these are the cases _ = 1; 2 and 4 
respectively. 

The three types of matrix models found 
predominantly in "classical" Random Matrix Theory 
are the Hermite (or Gaussian), Laguerre (or Wishart), 
and Jacobi (or MANOVA) ensembles. In this talk I will 
describe these ensembles and present some recent 
results in the study of eigenvalue distributions of the 
Hermite and Laguerre types, which were obtained 
using methods developed in Numerical Linear 
Algebra. 

The study of random matrices emerged in the late 
1920's (with the publishing of Wishart's most 
important work in 1928) and 1930's (with Hsu's work 
[7]), and they are a very quickly growing _eld of 
research, with communities like nuclear physics [4, 5, 
6], multivariate statistics [10, 8, 9], algebraic and 
enumerative combinatorics [11, 12, 13]. 

Many of the matrix models have thus standard 
normal entries, which are independent up to a 
symmetry/positive de_niteness condition (since the 
spectrum, whether it corresponds to the energy levels 
of a Schr• odinger operator or to the components of a 
sample covariance matrix, is real). 

Many studies of integrals over the general _ 
ensembles focused on the connection 

with Jack polynomials; of these we note the ones 
inspired by Selberg's work, like 
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Aomoto [14], Kaneko [15], Kadell [16]. 

We focus on the implications of this discovery to the 
point process limits of the spectral edge in the general 
_-ensembles. The distributional limits of the largest 
eigenvalues in G(O=U=S)E comprise some of the 
most celebrated results in random matrix theory due to 
their surprising importance in physics, combinatorics, 
multivariate statistics, engineering, and applied 
probability: [17-22] mark a few highlights. 

THE HERMITE (GAUSSIAN) ENSEMBLES 

The Gaussian ensembles were introduced by physicist 
Eugene Wigner in the 1950's. Though he started with 
a simpler model for a random matrix (entries from the 
uniform distribution on 1g, [23]) 

The general b ensembles appear to be connected to a 
broad spectrum of mathematics and 

physics, among which we list lattice gas theory, 
quantum mechanics, and Selberg-type integrals. 

Also, the b ensembles are connected to the theory of 
Jack polynomials ~with the correspondence 

a5 2/b where a is the Jack parameter!, which are 
currently objects of intensive research [ 24-26] 

Jack (1969-1970) originally defined the polynomials 
that eventually became associated with his name while 
attempting to evaluate an integral connected with the 
noncentral Wishart distribution [27,28]. Jack noted that 

the case were the Schur polynomials, and 

conjectured that were the zonal polynomials. The 
question of finding a combinatorial interpretation for 
the polynomials was raised by Foulkes [29], and 
subsequently answered by Knop and Sahi [30]. Later 
authors then generalized many known properties of 
the Schur and zonal polynomials to Jack polynomials 
[31,32].  

CONCLUSION 

We have reviewed the statistical approaches being 
implemented in ensembles for further work to 
investigate the standard output. 
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