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Abstract—Monte Carlo Method is used to represent a vast number of problem solving technologies which use 
probability statistics and random numbers. The methods of Monte Carlo are ways of using computers to solve 
crucial issues in a most improbable way. A Monte Carlo algorithm is also a computer algorithm and it is used to 
simulate the other system's behavior. It uses statistics and randomness to get an outcome. Thus this study 
discusses about the Monte Carlo methods, their major components, algorithms, benefits and drawbacks.  

Index Terms— Monte Carlo Methods, Monte Carlo Algorithms, Components of Monte Carlo, Benefits and 
Drawbacks of Monte Carlo. 

------------------------------------------♦------------------------------------- 

I. INTRODUCTION TO MONTE CARLO METHODS 

According to Assaraf and Caffarel (1999) a Statistical 
Method which has been an occurrence for several years is 
the Monte Carlo Method. Using this method the speed of 
computation to arrive at a highly accurate solution can be 
slow since the accuracy is related to the square root of 
simulated particles. Because a numerous particle must be 
simulated it is not possible for a human being to resolve 
the issue by the Monte Carlo  Method. Only after special 
computational technologies and computer science were 
discovered this method is used vastly in several fields and 
mostly in critical applications. To perceive this method the 
content of the Monte Carlo method must be known. 

Contrary to that Janke (1998) has mentioned that Monte 
Carlo methods offer accurate solutions to different 
mathematical issues by performing experiments of 
statistical sampling. They can be referred loosely as 
statistical simulation methods where the statistical 
simulation is referred in normal terms to be any method 
that acquires random number sequences to execute the 
simulation. Thus Monte Carlo methods are a gathering of 
various methods that all execute the similar process 
basically. This process includes executing numerous 
simulations using probability and random numbers to get 
an accuracy of the response to the problem. The Monte 
Carlo Methods defining feature is its random number 
usage in its simulation. In facts these methods acquire their 
collective name from the fact that Monte Carlo the Monaco 
Capital has numerous casino roulette wheels and casinos 
are a better instance of a random number generator. 

Similarly Stokes-Rees et al (2008) have described that 
since the early 1940s the Monte Carlo Simulation 
technology has occurred formally where it has research 
applications into nuclear fusion. However with the 
development in computer techniques  and power has the 
technique become used more vastly. This is because now 
computers are able to execute millions of simulations much 
more quickly and effectively than before. This is an 
essential factor because it refers that the technique can 
offer an approximate response quickly and to a greater 
accuracy level because more simulations executed creates 
approximation more accurate. Conversely Sokal (1992) 
has described that the Monte Carlo methods offer only an 
approximation of the response. Thus the approximation 
error analysis is a main factor to take into account when 
estimating responses from these methods. The attempt to 
reduce these mistakes is the reason there are numerous 
Monte Carlo methods. The different methods can have 
various accuracy levels for their responses although this 
can rely on particular conditions of the question and some 
method’s accuracy level differs relying on the issue.   

II. HISTORY OF MONTE CARLO METHOD 

Landau and Binder (2000) have described that in the 
community of materials the Monte Carlo method is an 
adaptation of a method used mainly to study the phase 
equilibrium statistical physics. During the Manhattan 
Project of II World War the term Monte Carlo was 
established by Metropolis (affected by the interest of Ulam 
in poker) because of the resemblance of statistical 
simulation to games of options and because Monte Carlo 
the Monaco capital was a gambling center. Now Monte 
Carlo defines to any method that acquires random number 
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sequences to execute statistical simulations. According to 
Radhakrishnan and Zacharia (1995) the major need to use 
the method of Monte Carlo for physical system simulation 
is that it must be applied to explain the system in 
probability density function terms also referred to as 
partition function (Z). Once the Z or a probability density 
function for a system is known then the simulation starts by 
random sampling from a probability density function and 
subsequently determining the desired sample properties by 
organizing some type of a trial. There must be a norm 
possible based on some cheap physical theory and/or 
mathematical theory to determine the result of such trial. 
Numerous trials are organized and all of these trials results 
are registered. In the Monte Carlo Method the last step is 
that the overall system behavior is acquired by computing 
the average of the trial results conducted. 

Similarly Janke (1994) has mentioned that Monte Carlo 
methods are used in various manners for instance, as an 
integration technique of a function, as a component to 
estimate state properties, as a way to model stochastic 
processes such as T, E, V and P and as a model to 
simulate a system of interacting particles for example, 
ferromagnetic materials. However the Monte Carlo method 
in material science has been applied mainly to simulate the 
evolution of microstructure where the equilibrium exists on 
a local basis at best. Normally the system is from 
equilibrium and the kinetic study of the processes is 
attempted that lead to equilibrium time function for instance 
recrystallization or growth of grain. Although the model has 
assured to be helpful for numerous issues, it is essential to 
perceive that its capacity to simulate the physical behavior 
at the level of continuum is heuristic. 

III. MAJOR COMPONENTS OF MONTE CARLO 
METHOD 

Graves (2001) has mentioned that Monte Carlo method  
major components are the random number generator, 
probability density function, tallying, estimation of error and 
sampling. Each component is described in detail below: 

The Monte Carlo Method continuously simulates the 
particle physical process migrating through the material. 
Every simulation is referred as a history. In every 
simulation the source particle has a probability density 
function to explain the position, direction distribution and 
energy. Every interaction of physics has a probability 
density function to explain the direction distribution and 
energy of discharging particles. In sampling these 
probability density functions a random number generator is 
used. The desired outcome is the number of histories 
average (Propp and Wilson, 1996). 

Random Number Generator: 

According to Per,  Snook and  Russo (2011) An essential 
component of a Monte Carlo method is the random number 
generator. All the random numbers are pseudo random 
numbers in Monte Carlo codes. A better algorithm of 
random number generates an unbiased and even random 
number with a big period. In a Monte Carlo code the 
random number generator is the foundation of all sampling. 
From distributions all samplings start with a random 
number generator. 

Probability Density Function (PDF): 

Trachtenberg (1990) has mentioned that another essential 
component of Monte Carlo Method is the probability 
density function. It is the statistical explanation of the 
physical system and explains the big particle samples 
statistical behavior. A big database is required to preserve 
the statistical information of a particle such as different 
interaction probability, particle’s direction probability after 
an interaction and particle’s energy probability after an 
interaction. Only if the probability density function is an 
accurate representation of the physical behavior of a 
particle can the outcome of a Monte Carlo simulation be 
precise. 

Estimation of error and Tallying: 

Gerald and Wheatley (2004) have described that the 
Monte Carlo Method builds a tally by averaging 
contributions in particular places over entire histories of 
simulation. Therefore a statistical mistake is produced as 
the histories variance. To develop the accuracy of tally the 
statistical mistake must gain a small mistake. The 
statistical mistake is proportional to the square root 
reciprocal to the history number according to the central 
limit theory: 

 

In the above equation N is the history number and R is the 
statistical mistake. Hence to acquire a greater precise 
solution a big number of histories are needed. This 
interprets into a greater expense of computational time. In 
several cases to acquire a precise outcome the researcher 
must wait for days or hours. Therefore the Monte Carlo 
method is regarded as a slowly converging method. 

Janke (1998) has mentioned that the Monte Carlo method 
needs a repetitive domain representation and a discretized 
grid is not required. It can be applied to an arbitrary 3-D 
geometric design and numerous realistic systems can be 
simulated readily. These realistic systems can be complex 
geometries. Increased complexity of geometry modeling 
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will last longer the time of computation of present codes of 
Monte Carlo and will make the issue establishment more 
time consuming and crucial. 

IV. MONTE CARLO ALGORITHM 

According to Hayes(1993) a Monte Carlo Algorithm 
performs for a fixed number of steps and generates a 
response that is proper with probability >=1/3. A Las Vegas 
algorithm often generates the proper response its 
execution time is a random variable which has a bounded 
expectation. These expectations/probabilities are other 
random options done by algorithm independent of the 
input. Thus Monte Carlo algorithms independent repetitions 
reduce the probability of failure exponentially. The Monte 
Carlo algorithm computer is a randomized algorithm whose 
execution time is deterministic but whose results may be 
improper with a specific probability. Similarly Mascagni and 
Srinivasan (2000) have mentioned that the Las Vegas 
Algorithm is randomized but in a varied manner they 
acquire a time amount that differs randomly but often 
generates appropriate response. A Monte Carlo algorithm 
can be transformed into a Las Vegas algorithm whenever 
there occurs a process to check that the results generated 
by the algorithm is appropriate. If so then the resulting 
algorithm of Monte Carlo is merely to execute the algorithm 
of Monte Carlo until one of the runs generates a result that 
can be checked to verify. There are two kinds of Monte 
Carlo Algorithms: 

One sided algorithm: 

Luby (1996) has described that one sided algorithm makes 
errors only in one direction. For instance is the actual 
response is yes then Pr [yes] >= � > 0 while if the actual 
response is no then Pr [no] = 1. In other words the yes 
response is assured to be precise while a no response is 
doubtful. The researcher can develop his confidence in no 
response by executing the algorithm several times using 
independent random bits every time. So the researcher 
can get the result as yes if they view yes after t repetitions 
and otherwise results no. In this scheme the error 
probability is at most (1 – �)t so if the researcher need to 
make this less than any needed � > 0 it satisfies to take 
several trials t to be O (log 1/�) where the O in the contant 
relies on �. The decision issues class is resolved by the 
polynomial time of Monte Carlo Algorithm with error on one 
sided is referred to as randomized polynomial time. 

Two sided error: 

In both the directions the algorithms of two sided errors 
make errors. Thus for example, if the actual response is 
yes then Pr [yes] >= ½ + � and if the actual response is no 
then Pr [ no] >+ ½ + �. The researcher can develop their 

confidence in this case by executing the algorithm several 
times and then making majority vote. The consequent 
estimation of standard reveals that several trials t needed 
to assure an error at most � is again O (log 1/�) (Landau 
and Páez, 1997). 

Example: 

The probability that most of the vote algorithm represents 
an error is similar to the probability that the researcher can 
acquire at most t/2 appropriate results in t trials which is 
indicated by: 

 

Taking where C is a constant 
relying on � makes this at �. The decision issues class is 
resolved by a Monte Carlo Algorithm’s  polynomial time 
with error on two sides is referred to as a bounded error 
polynomial time of probability.  

Miodownik, Holm, et al. (2000) have mentioned that the 
result is often appropriate but the execution time may be 
unbounded in a Las Vegas algorithm. However the 
expected execution time is needed to be bounded. 
Similarly the researcher needs the bounded execution time 
but permits the algorithm to result either appropriate 
response or a special sign “?” so that the resulting 
probability “?” is ½. The researcher can often transform a 
Las Vegas algorithm into a Monte Carlo algorithm by 
executing it for a fixed time amount and resulting an 
arbitrary response if it fails to stop. This executes because 
the researcher can bound the probability that the algorithm 
will execute a fixed limit past using inequality of Markov 
and the fact that the expectation is bounded. The converse 
is not true apparently because of the strict appropriate 
result need of Las Vegas algorithms. Thus there is no 
special term for transforming a Monte Carlo algorithm into 
a Las Vegas algorithm. The decision is issued class 
resolved by a Las Vegas algorithm polynomial time is 
referred to as zero error polynomial time probability.   

V. ADVANTAGES OF MONTE CARLO 
SIMULATION 
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Monte Carlo simulation offers several benefits. Some of 
them are described below: 

Probabilistic Outcomes:  

Outcomes reveals not only what must exist but how 
probably every result is. 

Analysis of sensitivity:  

The deterministic analysis makes it crucial to view with just 
a small number of cases to view which variables influence 
the results the most. It is simple to view which inputs had 
the largest influence on bottom line outcomes (Laurenzi, 
Bartels  and Diamond, 2002). 

Graphical outcomes:  

Manousiouthakis and Deem (1999) have described that 
because of the data produced by Monte Carlo simulation it 
is simple to make various results graphs and their 
opportunities of existence. This is essential for 
communicating observations to other stakeholders. 

Analysis of scenario:  

It is crucial to model various integrations of values for 
various inputs to view truly various scenario effects in 
deterministic models. Analysts can view exactly which 
inputs had which values integrated  when particular results 
existed using the Monte Carlo simulation. For pursuing the 
further analysis this is not valuable. 

Inputs Correlation:  

It is possible to model interdependent rapport between 
variables of input In Monte Carlo simulation. It is essential 
for accuracy to indicate  how, in reality, when some factors 
develops and others increases or decreases accordingly 
(Siepmann and Frenkel, 1992). 

Simplicity: 

According to Dodd, Boone and Theodorou (1993) the 
Monte Carlo Simulation major benefits contrast to other 
numerical processes that can resolve the similar issue is 
that it is simple conceptually. It does not need a particular 
knowledge of solution form or its analytic assets. On a 
computer Monte Carlo is similarly simple to implement. 

Dimension Independence: 

Betancourt (2005) has described that the amount of work 
to acquire a similar precision amount is dimension 
independent d of the underlying random variables. Thus 
the integration of Monte Carlo is the only process to 

compute high dimensional integrals numerically. The 
techniques of traditional quadrature normally need an 
amount of work exponential in several dimensions d since 
they need grid sampling in d i.e. dimensional space. On the 
other side the integration of Monte Carlo is normally not 
rivalry with quadrature for less dimensional integration. 

Parallelizable Easily: 

Several processes of a computer can be involved in 
simulations of Monte Carlo simultaneously. Every 
simulation is independent of another simulation (Korniss, 
Novotny, and Rikvold, 1999). 

Unrestricted option of functions: 

The functions to combine with Monte Carlo can be arbitrary 
practically. No smoothness circumstances or boundedness 
circumstances are required for instance offering the 
integral is finite.  

VI. DRAWBACKS OF MONTE CARLO 
SIMULATION 

Though there are several benefits in Monte Carlo 
Simulation there are some drawbacks also. Some of the 
drawbacks of Monte Carlo Simulation are: 

Slowness: 

Caflisch and Numerica (1998) have described that the 
Monte Carlo integration major drawback is that it is slow. 
Numerous samples may be needed on the order of 1000s 
or even millions to acquire agreed precision in the 
response. Specifically since the probabilistic mistake 
bound reduces as the root of the reciprocal square of 
iteration numbers to gain more than one precision’s 
decimal digit of the response needed 10

2
 = 100 times 

greater than the iteration numbers.  

Crucial in calculating mistakes: 

There are no difficult bounds on the mistake of the 
evaluated outcomes. The probabilistic mistake bound 
which is significantly based on the variance for skewed 
distributions may not be a better extent of the mistake 
(Geyer, 1991). 

Black Box approach: 

Earl and Deem (2005) has described that one can study 
the solution behavior with some kinds of analytical 
approximation if the starting parameters are modified. 
Normally this is difficult to do with Monte Carlo’s black box 
approach. 
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Mistakes May Rely On Distribution: 

Tessi et al (1996) has mentioned that the calculation of the 
expectation EX may be influenced severely if X the 
distribution is skewed heavily or has tails of heavier than 
normal. A non random numerical process may prevent 
these deficiencies or at least be as influenced severely. 

VII. CONCLUSION: 

In conclusion the Monte Carlo method is simple to use 
program to resolve various decision making probability 
issues. It permits the researchers to execute several trial 
simulations while accounting for doubtful variables. It can 
be inferred that as computers are becoming available 
easily, better networked and more numerous the 
computations of Monte Carlo algorithms will become more 
useful and common. .   
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