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Abstract – The Gaussian isoperimetric inequality, and its related concentration phenomenon, is one of the most 
important properties of Gaussian measures. These notes aim to present, in a concise and self-contained form, 
the fundamental results on Gaussian processes and measures based on the isoperimetric tool. In particular, our 
exposition will include, from this modern point of view, some of the by now classical aspects such as 
integrability and tail behavior of Gaussian semi norms, large deviations or regularity of Gaussian sample paths. 
We will also concentrate on some of the more recent aspects of the theory which deal with small ball 
probabilities. 

We give a martingale proof of Gaussian isoperimetry, which also contains Bobkov’s inequality on the two-point 
space and its extension to non-symmetric Bernoulli measures. We derive the equivalence of different forms of 
Gaussian type isoperimetry. This allows us to prove a sharp form of Bobkov’s inequality for the sphere and to 
get new isoperimetric estimates for the unit cube. 

------------------------------------------♦------------------------------------- 

INTRODUCTION 

A popular isoperimetric inequality is known as the classical 
isoperimetrical inequality. It was proposed by Zenodorus, a 
Greek mathematician. This document exposes the 
applications of isoperimetric inequalities in modern fields. 
An obvious application of isoperimetric inequalities is in 
area optimization. This case was exploited by Queen Dido 
of Carthage. We will not describe Queen Dido's application 
of the inequality, interested readers might find [8] 
informative. This singular application, area optimization, 
seems  insignificant when one considers the complexity of 
proving the classical isoperimetric inequality. This 
document will provide applications which are specific to 
computers and computer networks as they have become 
ubiquitous tools in the 21st century. 

In computer networks, data is transferred from sender to 
receiver as a sequence of on and off signals via a 
communication channel. The issue with data transfer is 
that it is sometimes done through unreliable or noisy 
channels hence loss of data is inevitable. This poses the 
challenge of how to determine if data contains errors at the 
receiver's side. Information theory, a subject mostly 
attributed to Claude E. Shannon, presents concepts such 

as error correction and detection which allow the detection 
of error and restoration of data. 

In this study, we extend a Brownian approach to (1.2) due 
to Capitaine, Hsu and Ledoux. We get a unified proof of 
(1.3) and (1.2), and an extension of (1.3) to an 
isoperimetric inequality for non-symmetric Bernoulli 
measures. This section contains a proof of the equivalence 
of different forms of isoperimetry on the Gaussian model. It 
follows from works by Wang and by Bakry and Ledoux that 

for any probability measure on , 

with for some , and such that 

 for some 

, there exists such that for every Borel 

set  

  (1) 

A simple proof of this fact for log-concave probability 
measures is given by Bobkov:(1.4) is equivalent to the 

existence of a number such that  
(Herbst condition). Moreover he proves that (4) implies that 

for all locally Lipschitz functions , 
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  (2) 

The constants provided by these results are not very good. 
Sharp ones are given by Bakry and Ledoux: under the 

hypothesis , one has for and every
 /as above 

 (3) 

Notice that the case and c = 1 gives). 

It is clear that (3) implies (2), which implies (1). We will 
show that they are equivalent, with the same constant c. 
The proof strongly relies on the Gaussian model. Then, we 
give a sharp form of Bobkov’s inequality for spheres, using 
the Gaussian isoperimetric function I. Finally, we improve 
the isoperimetric estimates of Hadwiger for the unit cube 

in . In particular, we recover the following result of 
Hadwiger: among subsets of measure 1/2 of the unit cube, 
half-cubes have the smallest boundary measure. 

GAUSSIAN NOISE STABILITY AND GAUSSIAN 
ISOPERIMETRIC INEQUALITY 

One of the oldest mathematical problems is the 
isoperimetric inequality in two dimensions. An isoperimetric 
inequality connects the volume of a set with its surface 

area. The isoperimetric inequality in  asserts that for 

every compact subset   with smooth boundary  

and every ball  with  we have the 

inequality  

An equivalent formulation is given by 

 

Where  {  for some } is the r-
extension of a set  in a metric space (X,d). 

(Clearly, we consider  with the Euclidean distance.)
 The equivalence of these two statements can be 
proved via Minkowski’s formula 

  (4) 

for a sufficiently smooth boundary  

Moreover, there is the following isoperimetric inequality on 

the sphere  in  with radius . The sphere is 

equipped with the geodesic distance as metric and the 

normalized rotationally invariant measure  

Theorem 1. Let  be a measurable subset and  

a geodesic ball such that  then  

for every  

We denote the standard Gaussian measure on  by , 
the one-dimensional standard Gaussian measure by 

and the cummulative distribution function of by 

 

The Gaussian measure can be considered as the limit of 

 for  in the following sense: If 

 denotes the projection onto the first n-

components of a vector in  then we have 

 for all measurable . 
A proof of this fact can be found in. 

As geodesic balls on  arise as the intersection of the 
sphere with half-spaces it is not difficult to believe that in 
the Gaussian isoperimetric inequality, half-spaces will fill 

the role of balls and geodesic balls in  and on , 
respectively. A half-space H in  is a set of the form 

 for some  and a unit vector 

 

Therefore, the following result can be seen as an infinite 
dimensional version of Theorem. 

Theorem 2. If  is measurable and H is a half-space 

with  then  for ever  Since 

 the theorem can be stated 
equivalently as 

 (5) 

for every .  

Using Minkowski’s formula (4) as a motivation to define the 

Gaussian surface area of a measurable set via 
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where { for some } is the r-
extension of A we can state the Gaussian isoperimetric 
inequality in the following form. 

Theorem 3 (Gaussian isoperimetric inequality). If  is 

a measurable subset then  

Here, we used the notation . In this section 
we will deduce this inequality from a generalization first 
proved by Borell. 

For /r-dimensional standard Gaussian vectors X and Y with 

 and  he introduced the Gaussian noise 

stability , i.e. the probability that X and Y 

lie both in a measurable set  and showed that it 
fulfills 

  (6) 

For  and . Note that a is chosen such 

that . This means that half-
spaces maximize the Gaussian noise stability among all 
measurable sets with the same Gaussian measure. In this 

section we will see that Theorem 3 follows in the limit  
indeed from this inequality or more precisely from the 
Gaussian noise sensitivity, i.e. the inequality 

  (7) 

which is equivalent to (6). The proof follows a semigroup 
argument proposed by Ledoux. 

In this section we will verify that  for 

every measurable subset  where 

 (8) 

For  where X,Y and Y' are independent standard 

Gaussian vectors in . In the following we will refer to this 
quantity as the Gaussian noise stability. With this definition, 

(6) can be formulated as in the following theorem. 

Theorem 4 (Gaussian noise stability). If  are 
measurable subsets such that H is a half-space with 

 and  then  

Definition gives rise to the following generalization. For a 

measurable subset  we define the r-stability of A for r 

> 1 and  through  

We show in this section that this quantity introduced by E. 
Mossel is a generalization of the Gaussian noise stability. 

Indeed, we will prove that  for every 

measurable subset  and  Therefore, 
Theorem 2 and thus (6) will follow from the next result 
which is the main result of these notes. 

In order to describe the equality cases in the theorem 
properly, we need the following notation. For a measurable 

subset  we define its center of mass with respect to 

the Gaussian measure  with the 
components 

 

If  for  then we set . Moreover, 

we  set, i.e. the distance of this center of 
mass from the origin. This enables us to associate the half-
space 

 (9) 

to B where a is chosen such that . The 
importance of H(B) is caused by the fact that the symmetric 

difference of B and H(B) is a null set if  agrees with the 

r-stability of a half-space with Gaussian measure . 
More precisely, the following generalization of Theorem 1.4 
holds true. 

Theorem 5. For a measurable subset ,  and 

 we have 

  (10) 

Equality holds if and only if the symmetric difference of A 
and H(A) has measure zero. 

We conclude this section with an outline of the remaining 
contents of this note. This section contains some notations 
and remarks as well as an application of the Gaussian 
isoperimetric inequality to concentration of the Gaussian 
measure. In this section, we give a proof of the main result 
of this note, Theorem [5], based on techniques from 
stochastic calculus. The following section consists of a 
proof of the Gaussian isoperimetric inequality which uses 
Theorem [5]. In the end of this work, we collect some 
abstract auxiliary results employed in this section. 
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QUANTITATIVE ISOPERIMETRIC INEQUALITY ON THE 
SPHERE 

Recent years have seen an increasing interest in 
quantitative isoperimetric inequalities motivated by 
classical papers by Bernstein and Bonnesen. In the 
Euclidean case the optimal result  states that if E is a set of 

finite measure in W
1
 then   holds true. Here 

the Fraenkel asymmetry index is defined as  

where the minimum is taken among all balls  with 

, and the isoperimetric gap is given by 

 

The stability estimate has been generalized in several 
directions, for example to the case of the Gaussian 
isoperimetric inequality, to the Almgren higher co 
dimension isoperimetric inequality and to several other 
isoperimetric problems. In the present study we address 
the stability of the isoperimetric inequality on the sphere by 

Schmidt stating that if is a measurable set having 

the same measure as a geodesic ball  for some 

radius , then  with equality if and only 
if E is a geodesic ball. Here, P(.E) stands for the perimeter 

of E, that is  if E is smooth and  
throughout the whole study. 

In view of the previously mentioned stability results the 
natural counterpart of (1.1) would be the inequality 

   (11) 

where now the Fraenkel asymmetry index is defined by  

  (12) 

The minimum is taken over all geodesic balls  

with . Notice, that we are denoting the -

measure of a set E by . When compared with inequality 
(11), even if it looks similar, has a completely different 
nature; in fact is scaling invariant (i.e. invariant under 

homotheties), while there is no scaling at all on . Indeed, 
it would be quite easy to adapt one of the different 
arguments in the study in order to prove (11) with a 
constant depending additionally on the volume of the set E, 
but blowing up as . In fact, the difficult case is when the 
set E has a small volume sparsely distributed over the 
sphere. In this situation a localization argument aimed to 
reduce the problem to the flat Euclidean estimate cannot 
work. 

To state our main result we introduce the oscillation index 

 of a set  

  (13) 

Where  is the outer unit normal to Eat the point 

 (contained in the tangent plane to at x% i.e. 

) and  is the outer unit normal to the 

geodesic ball  centered at whose boundary 
passes through x. Note, that the Fraenkel asymmetry 

 measures the -distance between the set E and 
the optimal geodesic ball of the same volume, while the 

oscillation index  is a measure for the distance 

between the distributional derivatives of   and of , 

where  is an optimal geodesic ball in (13) of the same 
volume as E. Alternatively, the oscillation index can be 

viewed as an excess functional between  and . 
The two indices are related by a Poincare-type inequality, 
stating that 

   (14) 

The main result of the present study can now be 
formulated as follows: 

Theorem 6. There exists a constant c(n) such that for any 

set  of finite perimeter with volume  for some 

, the following inequality holds 

  (14) 

We mention that (14) is the counterpart for the sphere of a 
similar inequality, where a suitable definition of oscillation 
index in the euclidean case was introduced for the first 
time. Note that as in the euclidean case by combining 
(1.23) with (1.22) immediately yields the stability inequality 
(11). On the other hand it is clear that (14) is stronger than 

(11),  the starting point for the proof of 
Theorem 1.9 is a Fuglede-type stability result aimed to 

establish (14) in the special case of sets whose 
boundary can be written as a radial graph over the 

boundary of a ball with the same volume. 

To establish such a result one could follow in principle the 
strategy used in the Euclidean case. However, to deduce 
(14) for radial graphs with a constant not depending on the 
volume needs much more care in the estimations. The 
main difficulty arises when passing from the special 
situation of radial graphs to arbitrary sets. To deal with this 
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issue we need to change significantly the strategies 
developed. 

To explain where the major difficulties come from, we 
observe that the oscillation index can be re-written in the 
form 

 

From this formula it is clear that the core of the proof is to 
provide estimates for the singular integral 

   (15) 

and its maximum with respect to p0, independent of the 
volume of E. This requires new technically involved ideas 
and strategies. In fact, in the contradiction argument used 
to deduce (14) for general sets from the case of a radial 
graph we need to show that all the constants are 
independent of the volume of E. The arguments become 
particularly delicate when the volume of E is small. In this 
case inequality (14) shows a completely different nature 

depending on the size of the ratio . In fact, if 

 and also , then E behaves 

asymptotically like a flat set, i.e. a set in and inequality 
(14) can be proven by reducing to the euclidean case, 
rescaling and then arguing as when E has large volume. 
However, the most difficult situation to deal with is when 

 and  

This case has to be treated with ad hoc estimates for the 
singular integral (15). 

BROWNIAN PROOF OF BOBKOV’S 
INEQUALITIES 

In order to simplify the notation we work with real-valued 

processes and functions. Let be a standard Brownian 

motion on  with natural filtration and sucli 
that . We assume that all the processes appearing 
below are adapted with respect to this filtration. 

Proposition 1 Let  and  be  real-valued 

martingales with . And 

let  be an increasing process, such that At 

is bounded for every  Assume 

that  for every . And that for some  

we have for every . Then 

 is a sabmartingale. 

The result remains true, with essentially the same proof, 

when is a real martingale and a vector-valued 
martingale with respect to the n- dimensional Brownian 

motion . In this case. is a vector process. 

is the scalar product in and is a matrix-
valued process. The condition above 

remains . This time with the Euclidean norm. 

Proof: Let be a positive C
1 

function, constant 

outside [0.1] and such, that  when 

. Let  Direct 
computations give 

 

Writing for the triple , we get by It formula 

 

with 

 

Since the stochastic integral has a bounded integrand, it is 

a martingale. Hence is a martingale plus . But 

since and  coincide, we get using the 

relation and omitting the variables 

 

Since , we have , hence 

 

thus is a sub martingale.  

The preceding computation is not difficult. but does not 
really explain why the result was intuitively clear. Given a 
non-negative semimartingale Z such that 

. It  formula shows that is a 
submartingale precisely when the formal second degree 

polynomial in the  variable has a non-
positive discriminant or in other words when 

 for every real value of . When , our 
formal expression is equal to 
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since . The trick is simply that 

the increase of (multiplied by ) must compensate the 

fact that . If we were trying to do the same for a 
different function J. we see that all is needed is that 

 for every t. 
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