
Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 1

E-Mail: ignitedmoffice@gmail.com

Enabling Proxy Based Security Protocols For

Embedded Devices

Parveen Kumar

 Research Scholar, CMJ University, Shillong, India

ABSTRACT:-The use of proxies is commonplace in today's networks, where they are used for a huge variety of network

services. A proxy is an intermediary placed in the path between a server and its clients. Proxies are used for saving network
bandwidth, reducing access latency and coping with network and device heterogeneity.

--♦-------------------------------------

OVERVIEW

In the specific case of mobile computing and wireless
communication, proxies are mainly used to overcome the
three major problems of these networks: throughput and
latency differences between the wired and the wireless
links, host mobility, and limited resources of the mobile
hosts (MH). Although proxies may be used also for
implementing specific services in ad hoc mobile networks,
usually they are used in infra-structured mobile networks,
since their functions commonly place high demands on
both processing and memory. Thus, in tins chapter we will
mainly discuss proxy-based architectures for infra-
structured mobile networks.

In most cases, proxies act as protocol translators, caches
and content adapters for clients with network or device
constraints and are placed on, or close to, the border
between the wired and the wireless networks, such as at
the wireless Access Points (AP) (also called Base Stations
or Mobility Support Stations). Besides these canonical
functions, however, proxies can perform a wide range of
other complex tasks on behalf of the mobile clients, such
as handover, session or consistency management,
personalization, authentication, check pointing,
service/resource discovery, and others.

The major advantages of using a proxy-based architecture
for serving mobile clients, when compared to an end-to-
end approach, cue the following: (a) all mobility- and
wireless-dependent transformations (translation,
transcoding) can be assigned to the proxy and need not be
handled by the servers, allowing legacy services to be
directly used for mobile access; (b) all processing required
for protocol and content transformations is distributed to
other nodes where they are required, avoiding an overload
at the servers; (c) placing proxies at (or close to) a node

with the wireless interface enables more agile and accurate
monitoring of the wireless link quality, detection of MH
disconnections, as well as better selection of the required
adaptation; and finally (d) transformations at any
communication layer can be implemented, and are more
easily adapted/customized according to the specific
capabilities of the wireless links.

As expected, there is a huge amount of work on proxy-
based middleware for mobile and wireless computing, each
solving the problems specific to some sort of service or
application, such as Web access, multimedia streaming,
database access, etc. Many authors use the teems
gateway, intermediary or agent instead of proxy, and
although there might be some subtle differences in their
meanings, we will use these terms interchangeably and
use the general definition of a proxy as being an entity that
intercepts communication or performs some service on
behalf of some mobile client.

INTRODUCTION

Attaining the goals of ubiquitous and pervasive computing
[6, 2] is becoming more and more feasible as the number
of computing devices in the world increases rapidly. How-
ever, there are still significant hurdles to overcome when
integrating wearable and embedded devices into a ubiqui-
tous computing environment. These hurdles include
designing devices smart enough to collaborate with each
other, increasing ease-of-use, and enabling enhanced
connectivity between the different devices.

When connectivity is high, the security of the system is a
key factor. Devices must only allow access to authorized
users and must also keep the communication secure when
transmitting or receiving personal or private information.

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 2

E-Mail: ignitedmoffice@gmail.com

Implementing typical forms of secure, private communi-
cation using a public-key infrastructure on all devices is dif-
ficult because the necessary cryptographic algorithms are
CPU-intensive. A common public-key cryptographic algo-
rithm such as RSA using 1024-bit keys takes 43ms to sign
and 0.6ms to verify on a 200MHz Intel Pentium Pro (a 32-
bit processor) [30]. Some devices may have 8-bit micro-
controllers running at 1-4 MHz, so public-key cryptography
on the device itself may not be an option. Nevertheless,
public-key based communication between devices over a
network is still desirable.

Since proxies are primarily used to bridge and smooth the
differences between networks and devices, and to perform
application-specific adaptations, then

-
 functions are

designed according to:

 The different characteristics of the wired and wireless
networks which are to be bridged, such as throughput
latency, reliability, probability of disconnection, etc.

 The specific characteristics of the mobile host, such as:
display size, user input/output mechanisms, processing
capacity, size of RAM and persistent memory, limited
energy supply, etc.

 The application type and its specific requirements/ such as
fast response time, low network latency, reliable
communication, mobility or disconnection transparency,
cache coherence, etc.

Tirese aspects give an idea of the wide range of adaptation
and management functions that can possibly be assigned
to proxies. They may handle communication protocol
issues, data transmission and encoding, device-specific
customizations, handover and mobility management,
security and authentication, recovery from disconnection,
etc.

hi spite of the huge diversity of proxy-centered
architectures and proposals we have identified two
orthogonal forms of classifying and comparing all proxy-
based approaches. Tire first dimension takes into account
some general characteristics of the proxy-based
architecture, while the second dimension focuses on the
tasks, i.e. functionalities/ assigned to the proxies. These
two classifications will be further detailed in sections 3 and
4, respectively.

Obviously, there are also other possible criteria for
classifying proxy-based approaches, hi particular,
Dikaiakos [IS] has written a very interesting survey about
proxy-based infrastructures specifically for the Web. He
proposes a classification of proxy approaches in three

dimensions: system architecture, functionality and
interactions. Regarding system architecture, he
distinguishes between centralized and distributed
architectures/ options for proxy placement, and proxy
configurability/programniability. Concerning functionality,
he proposes six broad categories, which are consistent
with our task categorization. Finally, with interactions the
author considers whether the proxy supports synchronous
or asynchronous communication. In addition, the article
also compares eight proxy-based architectures and
frameworks for the Web in deep detail. Hence, we
recommend it as complementary reading to the interested
reader.

To allow the architecture to use a public-key security model
on the network while keeping the devices themselves
simple, we create a software proxy for each device. All
objects in the system, e.g., appliances, wearable gadgets,
software agents, and users have associated trusted
software proxies that either run on an embedded processor
on the appliance, or on a trusted computer. In the case of
the proxy running 011 an embedded processor 011 the
appliance, we assume that device to proxy communication
is inherently secure.

1
 If the device has minimal

computational power,
2

and communicates to its proxy
through a wired or wireless network, we force the
communication to adhere to a device- to-proxy protocol.
Proxies communicate with each other using a secure
proxy-to-proxy protocol based on SPKI/SDSI (Simple
Public Key Infrastructure / Simple Distributed Security
Infrastructure). Having two different protocols allows us to
run a computationally-inexpensive security protocol on
impoverished devices, and a sophisticated protocol for
resource authentication and communication 011 more
powerful devices. We describe both protocols in this
section.

Using the ideas described above, we have constructed a
prototype automation system which allows for secure, yet
efficient, access to networked, mobile devices. In this
system, each user wears a badge called a I<21 which
identifies the user and is location-aware: it "knows" the
wearer's location within a building. User identity and
location information is securely transmitted to the user's
software proxy using the device-to-proxy protocol.

Devices themselves may be mobile and may change loca-
tions. Attribute search over all controllable devices can be
performed to find the nearest device, or the most appropri-
ate device under some metric.

3

By exploiting SPKI/SDSI, security is not compromised as
new users and devices enter the system, or when users
and devices leave the system. We believe that the use of

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 3

E-Mail: ignitedmoffice@gmail.com

two different protocols, and the use of the SPKI/SDSI
framework in the proxy-to-proxy protocol has resulted in a
secure, scalable, efficient, and easy-to-maintain
automation system.

To allow our architecture to use a public-key security
model on the network while keeping the resources
themselves simple, we create a software proxy for each
resource. All objects in the system, e.g., appliances,
wearable gadgets, software agents, and users have
associated trusted software proxies that either run on an
embedded processor oil the appliance, or on a trusted
computer, hi the case of the proxy running oil an
embedded processor on the appliance, we assume that
resource-proxy communication is inherently secure.

2
 If the

resource has minimal computational power.' and
communicates to its proxy through a wired or wireless
network, we force the communication to adhere to a
resource-proxy protocol. Proxies communicate with each
other using a secure proxy-proxy protocol based on
SPKI/SDSI (Simple Public Key Infrastructure / Simple
Distributed Security Infrastructure). With two different
protocols, we are allowed to run a computationally-
inexpensive security protocol on impoverished resources,
and a sophisticated protocol for authorization and
communication oil more powerful resources.

The resource-proxy protocol varies for different types of
resources. In particular, we consider lightweight resources
with low-bandwidth wireless network connections and slow
CPUs, and heavyweight resources with higlier-bandwiclth
connections and faster CPUs. We assume that
heavyweight resources are capable of running proxy
software locally (i.e., the proxy for a printer coulcl run on
the printer's CPU). With a local proxy, a sophisticated
protocol for secure resource-proxy communication is
unnecessary, assuming critical parts of the resource are
tamper resistant. For lightweight resources, the proxy must
run elsewhere. An example of a resource-proxy protocol
for a lightweight resource is one in which the resource and
its proxy share symmetric keys with which they encrypt and
authenticate their communication.

For the proxy-proxy protocol, we have adopted a client-
server architecture. When a particular principal, acting on
behalf of a resource or user, makes a request via one
proxy to a resource represented by another proxy, the first
proxy acts like a client, and the second as a server.
Services on the server are either public or protected by
SPKI/SDSI access control lists (ACLs). To gain access to a
service protected by an ACL, a client must send a signed
copy of its request, and a chain of SPKI/SDSI certificates
demonstrating that it is a member of a group in an entry on
the ACL.

Hie proxy-proxy protocol layers SPKI/SDSI access control
over an application protocol, which in turn is layered over a
key-exchange protocol. This allows us to deal with a
variety of application protocols which may be implemented
across wired or wireless links in a heterogeneous network.

Using the SPKI/SDSI framework, ACLs associated with
resources can be created once and rarely need to be modi-
fied. User access rights are modified by issuing certificates
based on group membership; rights can be revoked
through a variety of mechanisms such as online checks, hi
addition, SPKI/SDSI features an elegant model for
delegation of authority, allowing for the partitioning of
responsibilities. The user maintaining an ACL on a
resource could, but need not be, the same user that
authorizes others to access the resource. This significantly
eases the burden of system administration.

PROXY FRAMEWORKS

As proxies have been used as a general approach for
handling dynamic adaptation, several efforts have been
made to develop generic proxy architectures, or proxy
frameworks, that can be customized or extended to solve a
particular problem. An example of such an effort is IETF's
Open Pluggable Edge Services , winch proposes a
reference architecture for web proxies, addressing issues
as security, distribution and dynamic configuration.

hi this section we describe common mechanisms used in
proxy frameworks and compare well-known systems, such
as TACC, RAPID ware, Mobi ware, MARCH, Web
Intermediaries, and MOCA Proxy Framework. The RAPID
ware project has proposed adaptive proxy services for
multimedia streams. Mobiware is a QoS-aware middleware
platform for multimedia applications which also provides
support for handoff control. Web Intermediaries (WEI)
have been developed at IBM, for HTTP-based adaptations,
such as personalizing contents, transcoding, or caching.
MARCH, TACC [S] and MOCA's Proxy Framework are
general-purpose content adaptation frameworks.

Most proxy frameworks provide general-purpose solutions
for the following four main issues: (a) implementation and
composition of adaptation modules, called adapters; (b)
description of the conditions in which the adapters should
be applied; (c) monitoring of the context, such as the
mobile device's profile, the application's state and the
communication bandwidth; and (d) the loading of adapters.
In the remainder of this section we will discuss these
features in more detail. A complementary discussion about
proxy frameworks can be found in [IS].

Adapter Development : The main customization point of a
proxy framework is the adapter, a module responsible for

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 4

E-Mail: ignitedmoffice@gmail.com

implementing a transcoding function of a message or its
content. A proxy (i.e. an instance derived from the
framework) may use several adapter instances for
implementing specific adaptations required for different
clients or contexts. Taking into account the client's current
context, a proxy determines at runtime which adapter
should be used for a message or data content. In some
situations (e.g. contexts), more than one adapter can be
selected for transcoding a message. Therefore, some
frameworks support the definition of priorities, ordering,
and/or composition of adapters.

Most proxy frameworks are designed using extensibility
mechanisms and component-based approaches to support
the development and composition of adapters, as well as
their loading into a proxy, hi some frameworks, such as
WEI, RAPID ware and MARCH, adapters can be
developed as independent and composable components
that are stored in adapter repositories or libraries and
deployed in proxies. Some frameworks provide classes of
special-purpose adapters. For example, Mobi ware
supports two kinds of adapters: Active Media Filters, for
media content adaptation, and Adaptive FEC Filters, for
error correction. RAPIDware also provides some FEC
filters, in order to improve the ability of the audio/video
stream to tolerate errors in a wireless environment. The
TACC model supports adapters for transformation (content
adaptation), aggregation (information collecting), caching
and customization.

Adapter Selection : The decision of winch adapters to use
and when to use them is an extensible characteristic of
proxy frameworks, which can be defined in two ways: via
programmable interfaces or via rule-based configuration.
An example of the first way can be found in Mobiware,
where the application requirements (utility function) and the
adaptations to be applied (adaptation policy) must be
programmed using a framework-provided API. When a
rule-based configuration is supported, the developer must
define rules winch contain the trigger conditions, described
in terms of the client and network states (i.e. context); the
adaptations to be executed; and sometimes also a priority
of the rule. Usually, the rules are described manually via an
XML (or RuleML) file, hi MARCH the selection process
evaluates the rule set during session setup, and produces
as the result a set of adapters to use (chain of adapters), hi
MoCA's Proxy Framework and WEI, rules are evaluated
just before each message is sent to the client.

Rule-based systems are easily configured and less error
prone (defining a model) than the ones based on
programmable interfaces; besides there is no need to deal
with intrinsic details of the framework. Furthermore, only
the content provider can decide which adaptation is

acceptable under different contexts, and thus, by using
rules, may define the sequence of adaptations to apply to
data, better controlling their composition, which is a very
complex task to automate.

Context Monitoring : The monitoring and gathering of
context information (i.e. the client's profile, and conditions
of the execution environment, such as available resources,
load and energy at the mobile host and the network) are
part of the desired functionality of proxy frameworks. The
collection of the network state, such as available bandwidth
or connectivity, is generally done via a monitoring function
or service, as in TACC, MARCH and MoCA Proxy
Framework. Information related to the client may be
obtained at their startup connection request [1], via a
customization database containing profiles [S], or through
monitormg of the device's resources [52]. hi most
frameworks, context changes are notified through
asynchronous events, which must be interpreted and
processed by the proxy in order to execute the appropriate
action.

Adapter Loading and Execution : According to how
adapters are loaded and activated, proxy frameworks can
be classified as configurable or dynamic proxies. In a
configurable proxy, adapters are defined statically at proxy
deployment time. The developer can change the proxy's
behavior by using trigger rules that define the order and the
context in winch an adapter should be executed. A
dynamic proxy supports dynamic and on-demand loading
of adapters from an adapter repository, according to the
current context.

Two examples of dynamic proxies are RAPIDware and
MARCH. RAPIDware provides a composable proxy
framework to support the dynamic composition of services
by fetching adapters (called filters) from a repository, and
instantiating and reconfiguring them dynamically on the
proxy in response to the changing needs of mobile clients.
MARCH provides a dynamic execution environment for
adapters, which facilitates the uploading of proxies on a
per-session basis, which may be placed on the server or
on mobile devices, hi MARCH, the MAS (Mobile Aware
Server) component is in charge of making the decision of
which adapters, chosen from the proxy repositories, are to
be used and where to execute them.

Ail example or framework for configurable deployment of
proxies is Web intermediaries (WBI). At proxy startup, the
registered adapters (or plug-ins) are instantiated with the
corresponding firing conditions in rules with an associated
priority. WEI supports die aggregation of adapters, and the
proxy can be placed either on the server or on the client
side. Another example is MoCA ProxyFramework, where

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 5

E-Mail: ignitedmoffice@gmail.com

the adapters are instantiated during proxy initialization,
according to the trigger rules (described ni an XML
configuration file) specifying the context 111 which the
adaptation (or set of adaptations) should be applied. This
framework also supports chaining of adapters, use of
priorities, and mechanisms for specifying caching policies.

Comparing the two approaches, the dynamic loading of
adapters provides more flexibility to the system. However,

configurable proxies support verification of a consistent
combination/configuration of adapters, hi addition, dynamic
(down)loadnig of adapters can be time consuming.
Therefore, it is more suited for systems where context
changes are not very frequent.

Table presents the cited frameworks, summarizing their
main characteristics according to the aspects discussed in
tins section and in section .

Table: Comparison table of extensible proxy approaches

Comparing the presented systems, one should notice that
all of them support content adaptation, while caching
management appears as the second most frequent
functionality, and handover management is provided only
by Mobiware. Furthermore, there are equal numbers of
systems concerning the level (middleware versus
application), the capability of dynamic adapter loading, and

the form of adaptation selection (programmable versus
trigger-rule configuration). Concerning communication
capabilities, only MoCA Framework and WEI support
asynchronous (publish/ subscribe) communication, which
has been recognized as best suited for mobile computing.
Context awareness is also supported by most of the
frameworks (i.e. except WEI), but only MARCH and MoCA
Framework consider also the state of the client's devices.
Although it is quite difficult to compare the frameworks,
Mobiware seems to be one of the most complete systems

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 6

E-Mail: ignitedmoffice@gmail.com

in terms of supported functionality, extensibility and
architecture.

APPLICATIONS

The system can be used as the framework to build many
different types of applications. In this section we will de-
scribe an example application that highlights the function-
ality and privacy that is provided by the wearable commu-
nicator.

Mobile Audio : We developed a mobile audio application
using the above described system. That is, as a user with a
wearable communicator moves from room to room, a

single audio stream will follow him or her. always playing
from the nearest speakers. The wearable communicator is
constantly being polled by its proxy, asking for its location.
This information is reported to an automation script that
runs on top of the proxy.

When an audio stream is sent to the proxy, the automation
script uses a directory server to obtain a list of speakers
that are reporting their location in the same area as the
wearable communicator. The automation script chooses
the closest one and redirects the audio. If. at any time, the
location of the wearable communicator changes, and
hence,

Figure. Audio Example Application

the nearest speakers change, the audio output is again
redirected. Figure is an overview of the application.

Since the audio is redirected by the proxy (and only the
proxy knows the user's location), the user's location is kept

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 7

E-Mail: ignitedmoffice@gmail.com

private. The proxy could also route other types of informa-
tion to the user's location such as text messages, or video,
while keeping the users actual location private. For other
applications, the user could set the wearable communica-
tor's proxy to only give out the location to select people but
keep it private from others.

Other Applications : The system can also easily support
other applications. For example many customization can
be made upon entering a new room, such as turning on the
lights, setting the thermostat, and opening the blinds.
Another application would be to customize the desktop of
the computer where the user is logged in. The system
could also forward phone calls to the phone nearest the
user. Or. for privacy, the system could be set up to only
print your documents when you are located next to the
printer.

DEVICE ARCHITECTURE

The primary- design goal of the architecture is security.
That is. the authentication, authorization, and privacy of all
communication. An architecture that fulfils this requirement
needs an end-to-end security layer, from the user con-
trolling the device to the device itself. In addition, the archi-
tecture must be appropriate for the devices being
controlled. Enhancing the security of, for example, a
wearable camera should not require the addition of
expensive processing power. The system must be secure
with the addition of, at most, a cheap, simple micro-
controller.

Public-key cryptography is ideal for authentication and
authorization. Unfortunately, public-key cryptography re-
quires signif cant computational power. A common public-
key cryptographic algorithm such as RSA using 1024-bit
keys takes 43ms to sign and 0.6ms to verify on a 200MHz.
Intel Pentium Pro [13]. This is using a 32-bit processor;
some of the devices in this system may have 8-bit micro-
controllers running at 1-4 MHz, so public-key cryptography
on the device itself is simply not an option.

However, public-key based communication between de-
vices over a network is still desirable. To allow the archi-
tecture to use a public-key security model on the network
while keeping the devices themselves simple, we create a

software proxy for each device which we run on a
separate, trusted computer. Between the proxy and the
device, we implement a symmetnc-key-based security
protocol. The proxy can implement sophisticated access
control and authentication algorithms, while the device
remains simple. Additionally, it is possible to run many
proxies on the same computer, allowing the amortization of
their cost, since they may require a signifcant amount of
processing power and memory to control access to the
device.

Devices : By focusing on impoverished devices, we handle
the base case; more complex devices can be built by
incorporating more of the proxy software onto the device
itself. The devices are most likely controlled by simple 8- or
16-bit micro-controllers running at 1-4 MHz. The devices
typically take control commands as input and output simple
state values. For example, a radio has simple input
variables such as on/off, tuning the station, and adjusting
the volume. It outputs state such as the current station and
volume level.

Devices also need a method for communicating with their
proxies. A device and proxy can communicate using
wireless methods such as radio frequency (RF) or mfrared.
or they could use a wired solution like Ethernet. Regard-
less of the medium, a reliable communication protocol is
required.

Proxies : The proxy is software that runs on a network-
visible computer. The proxy 's primary function is to make
access- control decisions on behalf of the device it
represents. It may also perform secondary functions such
as running scripted actions on behalf of the device and
interfacing with a directory service.

The proxy can implement computationally expensive se-
curity algorithms since it runs on a computer that has sig-
nifcantly more processing capabilities than the device. The
proxy can also store large access control lists that would
not £t in the device's memory. It uses these mechanisms to
act as a guardian; the proxy authenticates users and only
allows those with valid permissions to control the device.

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 8

E-Mail: ignitedmoffice@gmail.com

Figure. Security model

Security Model : The proxy and device share a secret key.
Tins secret key allows them to communicate using
symmetric-key authentication and encryption. Symmetric-
key operations take much less processmg power than
public-key. so the device can do this computation with a
small micro-controller.

All communication passes through the proxy, so it au-
thenticates and then routes communication from the user
to the device. The sow of communication is shown in
Figure with each step described below.

 The proxy and user authenticate each other. They also set
up a secure communication channel.

 The user sends his or her request to the proxy.

 The proxy checks its access control list (ACL) to verify the
user is allowed to perform the specif ed request. If this
check succeeds, the proxy forwards the request on to the
device. Otherwise, the proxy responds with an error
message.

 The device performs the requested action and sends a
response back to the proxy.

 The proxy forwards the response back to the user.

Device Initialization: When a device is initialized it must be
assigned a proxy and it must obtain a secret key that is
shared with the proxy. This is done by physically touching
the device to the computer that will run the proxy. When
the device is touched to the computer, a proxy is created
and the proxy then generates a random secret key that it
shares with the device. This initialization is straightforward
and easy for the user who is initializing the device. The
user does not need to perform any manual con£guration.

REFERENCES

[1] 16/32-bit lpc2000 family. http: //www.nxp.com
/products /microcontrollers/32bit/index.html.

[2] ARM extended trace macrocell (etm) technical
reference guide.
http://www.arm.com/documentation/TraceDebug.

[3] ARM’s coresight on-chip debug and trace
technology.
http://www.arm.com/products/solutions/CoreSight.html.

[4] Armulator, ARM. http://www.arm.com
/support/ARMulator.html.

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 9

E-Mail: ignitedmoffice@gmail.com

[5] Device file system guide.
http://www.gentoo.org/doc/en/devfs guide.xml.

[6] exportfs, srvfs - network file server from plan9 man
pages.
http://plan9.belllabs.com/magic/man2html/4/exportfs.

[7] Features of the msp430 bootstrap loader (rev. d).
http://focus.ti.com/lit/an/slaa089d/slaa089d.pdf.

[8] Freescale, MPC565 user’s manual, 2002.

[9] Introduction to on-board programming with intel
flash memory.
http://www.intel.com/design/flcomp/applnots/29217902.pdf.

[10] Iso 13239 : High-level data link control protocol.

[11] Msp430 : Ultra low power mcu from texas
intruments. http://www.ti.com/msp430.

[12] National ecological observatory network.
http://www.neoninc.org.

[13] OCP-IP: Open Chip Protocol International
Partnership. http://www.ocpip.org.

[14] Providing asynchronous file i/o for the plan 9
operating system.
http://pdos.csail.mit.edu/papers/plan9:jmhickey-meng.pdf.

[15] Simple Object Access Protocol (SOAP).
http://www.w3.org/TR/soap.

[16] Simulavr: an AVR simulator.
http://savannah.nongnu.org .

[17] The two percent solution.
http://www.embedded.com/story/OEG20021217S0039.

[18] What processor is in your product?
http://www.embedded.com/columns/showArticle.jhtml?artic
leID=193101174.

[19] Emstar: A software environment for developing
and deploying wireless sensor networks. In Proceedings of
the USENIX 2004 Annual Technical Conference, 2004.

[20] The Nexus 5001 Forum Standard for a Global
Embedded Processor Debug Interface, 2004.
http://www.nexus5001.org.

[21] Guest editorial: Concurrent hardware and software
design for multiprocessor SoC. Trans. On Embedded
Computing Sys., 5(2):259–262, 2006.

[22] D. E. L. G. M. H. A. Cerpa, J. Elson and J. Zhao.
Habitat monitoring: Application driver for wireless
communications technology. In Proceedings of the 2001
ACM SIGCOMM Workshop on Data Communications in
Latin America and the Caribbean, April 2001, 2001.

[23] K. M.-M. A. Mayer, H. Siebert. Debug support,
calibration and emulation for multiple processor and
powertrain control socs. IEEE Trans. Comput., 55(2):174–
184, 2006.

[24] C. G. A. S. Tanenbaum and B. Crispo. Taking
sensor networks from the lab to the jungle. IEEE Computer
Magazine, 39(8):98–100, 2006.

[25] D. F. Bacon. Realtime garbage collection. Queue,
5(1):40–49, 2007.

[26] T. W. Bart Vermeulen and S. Bakker. Ieee 1149.1-
compliant access architecture for multiple core debug on
digital system chips. In Proceedings of the International
Test Conference, 2002.

[27] K. A. Bartlett, R. A. Scantlebury, and P.
T.Wilkinson. A note on reliable full-duplex transmission
over half-duplex links. Commun. ACM, 12(5):260–261,
1969.

[28] S. Bhattacharya, J. Darringer, D. Ostapko, and Y.
Shin. A mask reuse methodology for reducing system-on-
a-chip cost. In ISQED ’05: Proceedings of the 6th
International Symposium on Quality of Electronic Design,
pages 482–487, Washington, DC, USA, 2005. IEEE
Computer Society.

[29] G. Biegel and V. Cahill. A framework for
developing mobile, context-aware applications. In 2nd
IEEE International Conference on Pervasive Computing
and Communications (PerCom 2004, March 2004.

[30] Bluetooth.com : The official Bluetooth Technology
Website. http://www.bluetooth.com/bluetooth/.

http://www.gentoo.org/doc/en/devfs

