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ABSTRACT: In this paper we construct a pairing on the group of degree zero divisors of a curve over a number field. This is 

accomplished by passing from divisors of the curve to divisors of an associated scheme and then employing an Arakelov 
intersection theory. Arakelov geometry studies a scheme X over the ring of integers Z, by putting Hermitian metrics on 
holomorphic vector bundles over X(C), the complex points of X. This extra Hermitian structure is applied as a substitute, for 
the failure of the scheme Spec(Z) to be a complete variety.. 

------------------------------------------♦------------------------------------- 

DISCUSSION 

To carry this out we need to define volume forms on the 
Riemann surface associated to the curve. This is the 
main topic of the first section. We must also have some 
understanding of how the presence of singular fibers in 
the scheme can affect things. This is done through the 
study of Picard functors. It is the bulk of section two. 
Finally in the third section of this chapter we define the 
pairing and study its behaviour under change of base 
field. 

Let K be a number field and 0 its rings of integers. Let C 
be a regular curve over 0 such that g, the genus of 

 is strictly greater than zero. Let p be a maximal 
ideal of 0 and let3be the set of prime Weil divisors of C 

which lie over p. Let  be the generic point of  and 

let  be the local ring of C at  Let 

 So  is the multiplicity of 

 along  Let   be the least common 

divisor of the set . For the rest of the chapter we 

assume for all maximal ideals p.  

REMARKS: 

1. If X is a smooth curve over K of genus greater 
than zero and possessing a K-rational point, then we may 
construct a regular curve V over 0 which satisfies III.2 

with the property that  

2. Let C' be obtained by blowing up the scheme C 
at a closed point. Then C* will be a regular curve over 0 

and, by [Re), C' will also satisfy II.3. Let  be 

an embedding. Let  

We consider Ci on a smooth connected compact 

Riemann surface. Let  be a basis for the 
holomorphic differentials of Ci, normalized so that 

 

Let 

 

Clearly  is a volume form on Ci Let [ , ] denote the 
pairing on Arakelov divisors of C which results from the 

use of the forms  above. 

Let Div
o
C denote the group of Weil divisors of C which 

have degree zero when restricted to  Let Pic
o
C 
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denote the quotient of Div
o
 by the subgroup of principal 

Weil divisors of C. The pairing [ , ] induces a pairing on 
Pic

o
C, which we also denote by [ , ]. Let D be a divisor of 

 which has degree zero. Let  be the divisor of 
C obtained from D by scheme-theoretic closure. If D is 

principal,  may not be principal. In general  will differ 
from a principal divisor of C by some divisor F. This 
divisor F will lie over the primes p of 0 such that 

 has more than one component. 

Therefore, to use the pairing [ , ] to construct a pairing on 

 we must augment the map  

Let p be a maximal ideal of 0 and let  be the set of 
prime divisors of C which lie over p. Let D be a degree 

zero divisor of  and let  denote the divisor of C 
obtained from D by scheme-theoretic closure. 

Proposition Is There exists integers mp and  such that 

 for all divisors E of C which 
lie over p. Furthermore the integer mp depends only on p 
and C, not on D. 

Proof: Let op be the localization of 0 at p, and let k(p) be 
the residue field of op. Let R be a discrete valuation ring 
such that: 

i)  R is an op module 

ii)  is regular. 

Let qR be the maximal ideal of R, LR the fraction field of R 

and  the projection from  to  

Let  be the set of prime divisors of  which lie 

over   Let ( , ) denote the Lichtenbaum-Shaferavitcl 

pairing on . We will say that holds for R if the 
follwoing statement is true:  

There is a positive integer mR such that:  Given a divisor 

D of  which has degree zero, there ( * ) are 

integers  such that:  

for all divisors E of  which lie over qR. To prove 

the proposition we must show that ( * ) holds for the ring 

R = Op. Let  be the completion of OP. To show that (8) 
holds for Op it is sufficient to show that ( * ) holds for the 

ring  Let Fn denote the finite field extension of 
k(p), of degree n. Let Sn be the discrete valuation ring 

which is an unramified extension of  and whose 
residue field is Fn, Sn exists by Hensel's lemma, see 

EGAIV. Let S be the direct limit of the  S is a 

discrete valuation ring whose residue field is  the 
algebraic closure of k(p). The ring S is also known as the 

strict henselization of  The rings Sn satisfy conditions 
i) and ii) above, hence so does S. 

We show below, in Proposition 2, that ( * ) holds for the 
ring S. To finish the proof of the proposition we must 

show that this implies that ( * ) holds for the ring  This 
is accomplished in two steps: First we show that if ( * ) 
holds for S, then ( * ) holds for some intermediate ring SN; 
then we show that if ( * ) holds for some SN, it also holds 

for  

Let  be the set of prime divisors of  which lie 
over p, these divisors correspond to the prime divisors of 

C which lie over p. Each  is an integral scheme over 
k(p), but these schemes may not be geometrically 
integral. Let ki be the algebraic closure of k(p) in the  field 

of rational functions of  Let ni be the degree of ki 
over k(p) and let N be the maximum of the ni’s. FN, SN as 
above. Let qN be the maximal ideal of S. 

Let  be the projection map  If E is 

a prime divisor of  which lies over qN, then E is 
geometrically integral, therefore the pullback of E to 

 has support along a prime divisor: 

 

E’ a prime divisor of  Since S is unramified over 

SN, we have n » 1. Let F1, F2 be two divisors of  
with one lying over qN. By the corollary to Proposition 11 
in chapter 1 we have: 
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Using III.6 and III.7 it's clear that if ( * ) holds for S, then ( 
* ) holds for SN. It remains to show that: if ( * ) holds for 

SN, then it holds for  Assume that ( * ) holds for SN. 

Let  be the projection from  to  The 

prime divisors   may split we lifted up to  Let 

 

where the are prime divisors of  and 
distinct divisors appear once in the summation. Since SN 

is un- ramified over  we have n
ij
 = 1 for all i and j. 

Let  be the fraction field of  Let D be a degree zero 

divisor of  and let  be its closure in  

Let LN be the fraction field of SN. Then  will be the 

closure in  of some degree zero divisor of 

 Therefore, if ( * ) holds for SN we have: 

 for all divisors E lying 
over qN’ and for some integers m,{d

ij
}. Now LN is galois 

over  with galois group  and  acts on 

 Furthermore the divisor   is invariant 

under this action. Therefore, if , we have: 

 for all divisors E of 

 which lie over qN. Sub tracting III.10 from III.9 

we obtain:  for all E 
lying over qN. This implies that the divisor 

is a multiple of the closed 

fiber of  If x is a uniformizing parameter of SN’ 

than (x) is 
a
 principal divisor of  and: 

 for some 

integer . If  is another element of  and we let 

 act on III.12 we obtain  

 If we 

substitute for a in III.12 and add the resulting equation 
to III.13 we obtain: 

 

We therefore have:  

 

Since  is a finite cyclic group, we have  for 

all  Therefore 

 

for all  The action of  on  induces a 

transitive action on the set . We therefore have 

 

for all j and j'. Consequently the divisor  is the 

pullback, via  of some divisor  

 

Let E be a divisor of  which lies over p, we have: 

 

Therefore, if ( * ) holds for the ring R = S, the proof of 
proposition 1 will be complete. 

In order to show that ( * ) holds for the ring S we will 
review Raynaud's work on Picard Functors. 

Let q be the maximal ideal of S, L fraction field of S, and 

 the residue field of S. We note that 

 is a regular curve over S. Let JL be the Jacobian 

variety of  Let PS be the Picard functor of 

 is representable by a group scheme over.  
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Let  the Picard scheme of  

Let eL be the identity point of PL and let  be the 
scheme-theoretic closure of eL in Ps. Let Qs be the 

quotient of Ps by  The group scheme Qs is smooth, 
separated, and locally of finite type over S, see [Re]. 

Since  we have:  

 

in fact Qs is the Neron model of PL over S, see [Re]. 
Since JL is a subscheme of PL, it is also a subscheme of 
QL. Let Q

’
s be the scheme-theoretic closure of JL in Qs. 

Then  is the Neron model of JL over S, 

see [Re]. 

Let  be the group of divisors of  which lie over 

q, and let  be the subgroup of principal divisors. We 
have: 

 

see [Re]. Consequently we have an exact sequence: 

 

Let  be the inverse image, in , of   

An invertible sheaf of  is in  if the restriction 

of that sheaf to  has degree zero. We note that 
every element of Ps (S) can be represented by an 

invertible sheaf of  since C satisfies III.2, see [Re] 
. 

We must define certain subschemes of Ps and Qs : Let G 
be a commutative group scheme over S. Let 

 be the connected component which 

contains the identity of the group scheme  

 Let G
o
 be the subgroup scheme of G 

defined as follows: 

Let  be a morphism over S, tnis morphism factors 
through G

o
 if the induced morphisms 

 and  factor 

through . Let  be the subgroup 
scheme of G defined as follows: An s-morphism 

 factors through  if some multiple of 

 factors through G
o
. In this manner we 

define group schemes  We collect 
some facts about these schemes: An invertible sheaf of 

 corresponds to an element of  if the 
degree of that sheaf, when restricted to each prime 

divisor of  which lies over q, has degree zero. 

Since  and  is closed in Qs (see 

[Re]) we have:  Finally Raynaud shows that 
the fact that III.2 holds for C implies that the map 

 is injective, see [Re]. 

Let  be the prime divisors of  which 

lie over q. We define a map  as follows:  

Let be the Lichtenbaum-Shaferavitch pairing on 

 Let E be an element of  and let  

 Let ni be the 

multiplicity of  along  if Xi is the generic 

point of  then  

 

We define a map  by 

 

Since ((q),E) = 0 for all E in  we have  Let 

 be the kernel of  We have: 
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by [Re]. Recall that c -Try element of Ps (S) can be 

represented by a divisor E of . Define a map 

 by 

 

Let E be a divisor of , and let EL be the induced 

divisor of  Since the degree function 

 is locally constant we have: 

 

A divisor E of  will represent an element of 

 if the degree of EL is zero. Consequently the map 

 above will restrict to a map 

 

By [Re], the map  is subjective, hence 
11.29 is subjective. We summarize these results in the 
following diagram, here all rows and columns are exact 
and all squares are commutative: 

 

Proposition 2: The condition ( * ) holds for the ring S. 

Proof: Let D be a divisor of  of degree zero, 

D represents an element [D] of JL (L). Since  is the 
Neron model of JL over S, [D] may be considered as an 

element of . By the diagram above we may also 

consider [D] as an element of  i.e. [D] is just 

the calss of  in Pic . Now  is 
just a finite group, say with m elements. Therefore m[D], 

considered as an element of  maps to the identity 

in . Hence m[D] lies in the image of  

in . Let  be the element of  which maps 

to m[D]. Hence , we see that  can be 

represented by a divisor E of , such that 

 for all i. Clearly E is linearly equivalent to 

 for some F in  In other words ( * ) holds for 
S. 

Corollary: Let J be the Jacobian variety of  and 
lry N be the Neron model of J over 0. Then the m in 
Proposition 1 is just the number of connected 

components of . 

Proof: We have  since Neron models are 
unique up to isomorphism. Furthermore the number of 
connected components of a smooth group scheme over 

k(p) is invariant under base extension by  

REMARKS: 

1. We note, for a given degree zero divisor D of 

 the divisor  in Proposition 1 is determined 
up to a multiple of the closed fiber of C which lies over p. 

2. Let f be a nonzero rational function on 

C, let fk be the restriction of f to  Let , 

a divisor of  and let  be as in Proposition 
1. 

Then we have: 
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Where  is the order of f along  (p) is the divisor 
corresponding to the entire fiber of C over p, and n is 
some integer. Let D and E be degree zero divisors of 

 Let  be the closure of D (resp. E) 
in C. 

Let p be a maximal ideal of 0, let  correspond 

to  as in Proposition 1. Let 

  

the summation running over maximal ideals p of 0 such 

that  has more than one component. Let Div
o
 

 be the group of degree zero divisors of  

Proposition 3: The pairing < , > is a bilinear, symmetric, 

real valued form on Div
o
  and its kernel contains 

the group of principal divisors of  

 

Proof: Let D’ be another degree zero divisor of  

Let  be a set of integers such that 

 

for all divisors F lying over p. Then  

 

for all such F. Since [ , ] is bilinear, we conclude that < , > 
is linear in the first variable. 

Let  be the set of integers such that: 

 

for all F lying over p. Then we have 

 

Symmetry for < , > and hence linearity in the second 
variable follow. 

The last claim follows from the remarks following the 
proof of Proposition 2. 

Let x be a closed point of C which lies over a maximal 

ideal p of 0. Let  be the blowup of C at x. let < , > 

(resp. < , >') be the pairing on Div°  (resp. Div° 

 ) defined by III.32. We are going to compare < , 
> and < , >'. 

 

Let D and E be degree zero divisors of  Let D' 

(resp;. E') be the divisor of  induced by D (resp. 

E). Let  be the set of prime divisors of C which 
lie over p. Let F be exceptional divisor of C' over C. Let r 
(resp. ri) be the multiplicity of x on 

D
 (resp. ri) so 

 

 

 

Where Fi is the strict transform of . The set  

 is the set of prime divisors of C' which lie 

over p. Let mp,  be a set of integers which satisfy: 

 

for all divisors G of C which lie over p. Let 
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A simple calculation shows: Proposition 4: 

 

for all divisors G of C* which lie over p. We have 

 

Therefore, if we apply Proposition 9 of Chapter I, we 
obtain Proposition 5: 

 

Let C" be any regular curve over 0 such that 

 We may construct a pairing < , > on 

 by using Arakelov's intersection pairing on  C".  
We may conclude that  < , >  agrees  with < , > Indeed, 

by [Li] there exists a minimal model for  over 0. 
Both C and c” are obtained from this model from a finite 
sequence of blowups. By [Re], C satisfies III.2 if and only 
if the minimal satisfies III.2. By Proposition 5, the pairings 
< , > and < , > both agree with the pairing obtained from 
the minimal model. 

Let K* be a finite extension of K and let 0' be the ring of 
integers of K'. Let C be as in the previous section. The 

scheme  may not be regular: If C is not smooth 

over p, p maximal in 0, and p ramifies in o’, then  
probably won't be regular at some points lying over p. 
However, by a finite sequence of blowups and 

normalizations we can desingularize   obtaining 
a regular curve C* over 0', see [Aby] or [Lip]. Furthermore 

by [Re], C' will also satisfy III.2. Let  be the 

composition of the desingularization  and 

the projection  The map  is a finite 
morphism away from a finite set of closed points of C. 

Let D and E be degree zero divisors of  

Let D' (resp. E') be the pullback of D (resp. E) to 

. Let < D, E > (resp.<D’, E’>) be the pairing 
defined by III.32. 

PROPOSITION 6: 

 

Where [K’ : K] is the degree of K’ over K. The proof of this 
proposition will be given locally, one prime of 0 at a time. 

Let p be a maximal ideal of 0 and let D1 and D2 be Weil 
divisors of C which meet properly. Let 

  

where the summation runs over points x of C which are 
common to the supports of both D1 and D2’ and which lie 
over p. Let D and E be two estranged degree zero 

divisors of  Let  be the set of prime divisors 

of C which lie over p. Let  be the set of integers 
such that 

 

for all divisors F of C which lie over p. Let 

 

The pairing < , > is bilinear and symmetric whenever it is 
defined. Let D’ (resp. E') be the pullback of D (resp. E) to 

. Then D’ and E’ are estranged degree zero 

divisors of . Let q be a maximal ideal of o’, let 
<D’, E’> be defined in the same fashion as III.43. Let 

 

which are common to the supports of both D1 and D2, 
and which lie over p. 

Let D and E be two degree zero divisors of the 

summation running over maximal ideals q of which lie 

over p. If D is a principal divisor of  then an 
application of Proposition 9 of Chapter I shows that 

. We may therefore define a pairing Xp ( , ) 

on all of  If E and F are degree zero divisors of 

 we may find a divisor D of  which is 
linearly equivalent to F and estranged from E. Let  
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Where  is defined by III.44. 

To prove Proposition 6 we will prove the Lemma. We 
have:  

 

for all degree zero divisors D and E of  Proof of 
lemma: Fix a divisor D for the rest of the discussion. We 
have  

 

for all integers n, all degree zero divisors E. We will show 
that the left side of III.46 is bounded by a constant that 
depends only on D. This implies that 

 

We may assume that the support of lies in the open 

subset U of C over which  is a finite morphism. Indeed 
C-U is a finite set of closed points, which lie in affine 
open subscheme of C since C is projective. By the 
Chinese Remainder theorem, there is a Weil divisor F of 

C which is linearly equivalent to and whose support lies 

in U. Let G be the restriction of F to . Since the 

support of F lies in U, so does the support of . Since F 

is linearly equivalent to , G is linearly equivalent to D. 
Therefore 

, 

for all E. 

Let F be an effective divisor of  which is which is 

estranged from D with deg  Then F is very 

ample. Let E be any decree zero divisor of   and 
let n be any positive integer. Then deg(F-nE) = deg 

, so F- nE is very ample. Therefore, there 

exists an effective divisor Fn of  which is 
estranged from D, such that nE is linearly equivalent to F-
Fn. We therefore have: 

 

We claim that <D, F-Fn>p differs from  by a 
number whose absolute value is less than  

 

Indeed, let x be a closed point of  Its closure in 

C. Let  be the multiplicity of  (p) along , see 
11.24. A simple analysis shows that  

 

where k(x) is the residue field of x and [K(x):K] is the 
degree of K(x) over K. The claim made in the beginning 
of the paragraph follows. 

An identical argument shows that  

differs from  by a number whose 
absolute value is bounded by a constant depending only 
on D. 
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