A Pairing on the Group of Degree Zero Divisors of a Curve Over a Number Field

Pairing Construction on Degree Zero Divisors of a Curve over a Number Field with Arakelov Geometry

by Shweta*,

- Published in Journal of Advances in Science and Technology, E-ISSN: 2230-9659

Volume 3, Issue No. 5, May 2012, Pages 0 - 0 (0)

Published by: Ignited Minds Journals


ABSTRACT

In this paper we construct a pairingon the group of degree zero divisors of a curve over a number field. This isaccomplished by passing from divisors of the curve to divisors of an associatedscheme and then employing an Arakelov intersection theory. Arakelov geometrystudies a scheme X over the ring of integers Z, by putting Hermitian metrics onholomorphic vector bundles over X(C), the complex points of X. This extraHermitian structure is applied as a substitute, for the failure of the schemeSpec(Z) to be a complete variety..

KEYWORD

pairing, group, degree zero divisors, curve, number field, divisors, associated scheme, Arakelov intersection theory, Arakelov geometry, complete variety

6. P. Griffiths and J. Harris, Principles of Algebraic Geometry. Wiley, 1978, N.Y. 7. S. Lang, Introduction to Algebraic and Abelian Functions, Addison-Wesley, 1972, Reading, MA. 8. S. Lang, Abelian Varieties, Interscience Pub., 1959, New York. 9. S. Lichtenbaum, "Curves over Discrete Valuation Rings", Am. J. of Math., 15, no. 2, April 1968, pp. 380-405. 10. J. Lipman, "Rational Singularities with applications to algebraic surfaces and unique factorization, Publ. Math. I.H.E.S. , no. 36. 11. D. Mumford, Abelian Varieties, Tata Inst, of Fundamental Research, 1970, Bombay. 12. A. Neron, "Modeles minimaux des variet^s abelienes sur les corps locaux et globaux", Publ. Math. I.H.E.S., no. 21. 13. Neron, "Quasi-functions et hauters sur les variet^s ab£liennes", Annals of Math., Second Series, Vol. 82, no. 1, July 1965, pp. 249-331. 14. M. Raynaud, "Specialisation du Functeur Picard", Publ. Math., no. 38. 15. A. Grothendieck, Groups de Monodromie en Geometrie Algebrique, Lecture Notes 288, Springe*-Verlag, 1972, Berlin. 16. I. Shaferavich, Lectures on Minimal Models and Birational Transformations of Two Dimensional Schemes, Tata, 1966, Bombay. 17. A. Weil, Courbes Algebrique et Variet£s Abeliennes, Hermann, Pa