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Abstract – A goal-oriented error estimate was derived for LED discretizations of a steady transport equation. The 
loss of Galerkin orthogonality in the process of flux limiting was shown to provide valuable feedback for mesh 
adaptation. The local orthogonality error was employed to generate an adaptive mesh for circular convection in a 
2D domain. Diffusive terms can be included using gradient recovery to stabilize the residuals and infer a proper 
distribution of local errors [197]. Further work will concentrate on goal-oriented error estimation for unsteady 
flow problems. 
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INTRODUCTION 

The goal-oriented error estimator developed in [197, 199] 
is used as a refinement criterion. The error in the value of a 
linear target functional is measured in terms of weighted 
residuals that depend on the solutions to the primal and 
dual problems. The Galerkin orthogonality error is taken 
into account and turns out to be dominant whenever flux or 
slope limiters are activated to enforce monotonicity 
constraints. The localization of global errors is performed 
using a natural decomposition of the involved weights into 
nodal contributions. The developed simulation tools are 
applied to a linear convection problem in two space 
dimensions. The goal-oriented approach to error estimation 
[14, 27, 185, 295, 309] is applicable not only to elliptic 
PDEs but also to hyperbolic conservation laws [141, 142, 
310]. In most cases, the error in the quantity of interest is 
estimated using the duality argument, Galerkin 
orthogonality, and a direct decomposition of the weighted 
residual into element contributions. The most prominent 
representative of such error estimators is the Dual 
Weighted Residual (DWR) method of Becker and 
Rannacher [27, 28].  

REVIEW OF LITERATURE  

The recent paper by Meidner et al. [248] is a rare example 
of a DWR estimate that does not require Galerkin 
orthogonality or information about the cause of its possible 
violation. Kuzmin and Korotov [197] applied the DWR 
method to steady convection diffusion equations and 
obtained a simple estimate of local Galerkin orthogonality 

errors due to flux limiting or other ‘variational crimes.’ In 
contrast to the usual approach, the weighted residuals are 
decomposed into nodal (rather than element) contributions. 
In regions of insufficient mesh resolution, the computable 
Galerkin orthogonality error comes into prominence. The 
mesh adaptation strategy to be presented below takes 
advantage of this fact. Steady convective transport of a 
conserved scalar quantity u  boundary 

 

vu) = s  

Here v is a stationary velocity field and s is a volumetric 
source/sink. Due to hyperbolicity, a Dirichlet boundary 
condition is imposed at the inlet 

u = uD  

in = {x v ·n < 0}, (5.2) 

where n is the unit outward normal and uD is the 
prescribed boundary data. 

The weak form of the above boundary value problem can 
be written as 

a(w,u) = b(w), 8w. (5.3) 

For brevity, we refrain from an explicit definition of 
functional spaces. The bilinear form a(·, ·) and the linear 
functional b(·) are defined by The inflow boundary 

conditions are imposed weakly via the surface integrals. 
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The differentiation of vu in (5.4) can be avoided using 
integration by parts this representation implies that a 
discontinuous weak solution u is admissible. In linear 
hyperbolic problems of the form (5.1), singularities travel 
along the streamlines of v. They may be caused by a jump 
in the value of s or uD. 

MATERIAL AND METHOD  

Let uh be a continuous function that may represent an 
approximate solution to (5.1)– (5.2) or a finite element 
interpolant of discrete nodal values. The numerical error e 
= u−uh can be measured using the residual of (5.3) 

w,uh) = b(w)−a(w,uh). (5.7) 

w,uh) depends not only on the 
quality of uh but also on the choice of w. In goal-oriented 
estimates, this weight carries information about the 5.3 
Global Error Estimates 199 quantities of interest. The 
objectives of a numerical study are commonly defined in 
terms of a linear output functional, such as [310] 

The piecewise-constant function g picks out a subdomain, 
for example, an interior or boundary layer, where a 
particularly accurate approximation to u is desired. The 
selector h picks out a portion of the out
= {x v · n > 0}, where the convective flux is to be 
controlled. In order to estimate the error j(e) in the 
numerical value of the output functional, consider the dual 
or adjoint problem [27, 28] associated with (5.3) a(z, e) = 
j(e), 8e. (5.9) 

The surface integral in (5.8) implies the weakly imposed 
Dirichlet boundary condition z = h 
j(e) and residual (5.7) are related by j(u−uh) = a(z,u−uh) 

z,uh). (5.10) 

An arbitrary numerical approximation zh to the exact 
solution z of the dual problem (5.9) can be used to 
decompose the so-defined error as follows j(u−uh) 

z−zh,uh zh,uh). (5.11) 

If Galerkin orthogonality holds for the numerical 
approximation uh zh,uh)= 0. Thus, the computable 

zh,uh) is omitted in most goal-oriented error 
estimates for finite element discretizations. However, the 
orthogonality condition is frequently violated due to 
numerical integration, round-off errors, slack tolerances for 
iterative solvers, and flux limiting. 

Since the exact dual solution z is usually unknown, the 
derivation of a computable error estimate involves another 
approximation ˆz _ z such that j(u−uh) 

z−zh,uh zh,uh). (5.12) 

The magnitudes of the two residuals can be estimated 
z−zh,uh zh,uh

(5.13) 

assembled from contributions of individual nodes or 
elements, as explained in the next section. 

The reference solution ˆz is commonly obtained from zh 
zh,uh) = 0, then 

the estimate j(u−uh) _ 0 that follows from (5.12) 

with ˆz = zh is worthless, hence the need to compute ˆz on 
another mesh or interpolate it using higher-order 
polynomials [197, 295]. On the other hand, the setting ˆz 
=zh is not only acceptable but also optimal for nonlinear 
flux-limited discretizations such that j(u−uh zh,uh) 6= 
0. In situations when the t z−zh,uh) is non200 5 Error 
Estimates and Adaptivity negligible, extra work needs to be 
invested into the recovery of a superconvergent 
approximation ˆz 6= zh. 

LOCAL ERROR ESTIMATES 

verify the accuracy of the approximate solution uh but the 
estimated errors in the quantity of interest must be 
localized to find the regions where a given mesh is too 
coarse or too fine. A straightforward decomposition of 
weighted residuals into element contributions results in an 
oscillatory distribution and a strong overestimation of local 

zh,uh) to a 
k can be large in magnitude even if 

Galerkin orthogonality is satisfied globally (positive and 
negative contributions cancel out). Following Schmich and 
Vexler [295] 

NUMERICAL EXPERIMENTS 

In this section, the presented high-resolution finite element 
scheme, goal-oriented error estimator, and hierarchical 
mesh adaptation algorithm are applied to a test problem 
from [156]. Consider equation (5.1) with s _ 0 and v(x, y) = 
(y,−x  

This incompressible velocity field corresponds to steady 
rotation about (0,0). The exact solution and inflow 
boundary conditions are given by [156] 

u(x, y) =_ 

1, if 0.35 _ 

p 

x2+y2 _ 0.65, 
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0, otherwise. 

The so-defined discontinuous inflow profile (−1 _ x < 0, y = 
0) undergoes circular convection and propagates along the 
streamlines of v(x, y) all the way to the outlet (0 < x _ 1, y = 
0), while its shape remains the same. 

Let j(u) be defined by (5.8) with g 
(−0.1,0.1)×(0,1) and g = 0 elsewhere. The function h is 
defined as the trace of g j(u) is 
6.04497e−02. The solution shown in Fig. 5.1 (a) was 
computed by the FEM-LED scheme described in Chapter 4 
on a uniform mesh of bilinear elements with spacing h = 
1/80. Owing to algebraic flux correction, the resolution of 
the discontinuous front is remarkably sharp, and no 
undershoots or overshoots are observed. However, it is 
obvious that there is actually no need for such a high 
resolution beyond x > 0.1 if it is enough to have an 

on the solution in this subdomain. This is illustrated by Fig. 
5.1 (b) which shows the solution to the dual problem 
computed by the FEM-LED scheme on the same mesh. 

Goal-oriented error analysis is performed using estimate 
(5.12) with ˆz = zh

limiting. Remarkably, the resulting global estimates are in a 
good agreement with the exact error which is illustrated in 
Table 5.1 for different grid spacings. The sharpness of the 
obtained error estimates is measured using the absolute 
and relative effectivity indices [197] 

We remark that the value of Ieff is unstable and misleading 
when the denominator is very small or zero, and the 
evaluation of integrals is subject to rounding errors. The 
relative effectivity index Ieff is free of this drawback and 
exhibits monotone convergence as the mesh is refined 202 
5 Error Estimates and Adaptivity 

CONCLUSION  

The adaptive hybrid mesh presented in Fig. 5.2 is refined 
along the discontinuity lines of u but only until they cross 

line x = 0.1 would not improve the accuracy of the solution 
uh h = 1/320, which 
corresponds to more than 200,000 cells in the case of 
global mesh refinement. 

Since the dual weight zh contains built-in information 
regarding the transport of errors and goals of simulation, 
such error estimators furnish a better refinement criterion 
than, for example, error indicators based on gradient 
recovery [362]. In the latter case, unnecessary mesh 

refinement would take place along the discontinuities 
located downs  
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