

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 1

E-Mail: ignitedmoffice@gmail.com

Network Diversity – Implementation and

Realization

Rishi Pal Bangarh1 Dr. K.K. Jain2

1
Research Scholar of Singhania University

2
Asst. Prof. , P.G.V. College Gwalior (M.P.)

--♦-------------------------------------

THE SOFTWARE DIVERSITY COMPROMISE

It is time for parents to teach young people early on that in
diversity there is beauty and there is strength.

GENERATING DIVERSITY

In order to counteract the lack of diversity in the Internet,
researchers have focused on the method of diversifying
pre-existing architectures, source code, and binaries in
order to artificially generate a diversity of software
packages. In general, we can classify the points at which
diversity can be applied into the following categories:
Requirements, Architecture, Implementation, and
Realization. While other classification schemes of diversity
techniques have been presented, we are less interested in
the managerial aspect of applying diversity to entire
business processes, and more concerned with diversity
implementation schemes.

During the Requirements phase, early design
considerations which provide diverse methods of
interacting with networked devices, processing information,
and interacting with the user can be factored into the initial
requirements document. Schemes which generate a loose
functional equivalence between different binaries would be
applied during this stage . In a similar vein, the Architecture
of the software architecture can be varied to allow for
different data flows and process interaction, while still
maintaining a standardized software interface.

The majority of the diversity schemes present in the
literature consider how diversification can be applied during
the Implementation and Realization phases of the software
development cycle. The Implementation phase allows for
source code to be modified in an algorithmic fashion, for
the software to be built using different programming
languages, and for the software to be built by independent
teams of developers using the same language.

As proposed by Forrest, Somayaji, and Ackley, automated
techniques which manipulate source code by reordering
source code, adding and removing non-functional code, or
changing the linking order of dynamic libraries can be
utilized. Researchers working on preventing reverse
engineering of binaries have developed code obfuscation
techniques which can also be used to diversify software
packages. A technique for obfuscating Java source code,
which uses similar code reordering techniques proposed
by Forrest, is presented in After code implementation, the
final Realization, or build and execution, of the software
can be modified through a wide variety of techniques,
including the compiler-driven randomization techniques . In
fact, many of the code reordering techniques which provide
memory randomization functionality can be applied at
runtime after a binary has been created . At the final stage
of development, the instruction set used can be diversified
without a wholesale switch of system architectures Both
systems serve the same purpose by converting maliciously
injected code into binary strings which have little meaning
for the processor. Additionally, both techniques are not
without practical precedent, as a similar technique was
proposed by Cowan et al. for protecting pointers in memory
. Both forms of artificial instruction set randomization
appear to be broken , however, due to irregularities in the
byte size of each opcode present in the x86 platform.

The code reordering and reforming techniques are
expanded upon in for the purpose of obfuscating Java
code against reverse engineering. Wang and her
coauthors describe code modification techniques for use in
protecting high-availability mechanisms which are currently
employed in server systems. The compile-time techniques
discussed are readily available for download, and have
found their way into open source operating system
distributions. Address space randomization is implemented
in the Linux PaX toolkit and compile time randomization of
stack offsets has been implemented in GCC . It has been

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 2

E-Mail: ignitedmoffice@gmail.com

pointed out that address space randomization doesn’t work
as well as predicted in architectures with smaller address
spaces due to the fact that large portions of the address
space are reserved by the operating system, and are not
accessible for user-land memory addressing .

THE CASE FOR ASSIGNING DIVERSITY

The attacks discussed against the publicly available
diversity generation techniques undermines the
assumption that a diverse pool of software can be created
at a low cost. Furthermore, an analysis of POSIX-compliant
operating systems showed that faults were highly
correlated across different vendor’s platforms, with the
majority of common faults existing in upper-level
functionality, such as C libraries. In general, as we
descend from the high level components of a system
through the core and into the original architecture
specifications, software diversity becomes both more
expensive to implement, and more effective against
common faults. We are forced to conclude that the cost of
generating a set of truly diverse software packages makes
diversity a scarce resource which must be carefully and
consciously allocated in order for it to be maximally
effective against attackers. For a single host, choosing the
optimal set of diversity techniques and diverse software
packages resolves down to a problem of economics. The
benefit side of the equation consists of creating a system
which is different enough from the global population of
computers that an attack against any one system would be
difficult to port to be effective against the diversified
system. Each of the diverse software packages, source
level, and compilerdriven diversity techniques have a
associated cost figure, as they either cost money to
purchase, decrease computing speed, or increase the
amount of administration time required for patching and
general system maintenance.

The burden of creating a host which is considered to be
diversified as compared to all other hosts on the Internet is
massive, but it is not one faced by a network administrator
who has control over a large pool of systems. The network
administrator’s diversification task is not equivalent to
solving the single host diversification problem for every
machine on their network. Unlike the single host’s
administrator, a network administrator is able to leverage
the restrictions placed on an attacker by the network
topology in order to reduce the number of diverse software
packages necessary. This is the fundamental thesis of our
work: by taking the topology presented to an attacker into
account, an assignment of a small number of diverse
software systems can be formulated which can slow or
stop an attacker in their tracks.

While it may be argued that the network topology traversed
by an attacker is a complete graph, and every machine
must be made diverse and separate from every other
machine on the network, this statement is not true even for
IP-level connectivity. The prevalence of firewalls and
private address spaces prevent any machine from
connecting to any other machine on the Internet.
Furthermore, not every attack exploits IP-level connectivity
for propagation. Worms which spread by traversing
individual e-mail address books move through a network
topology which is emarkably sparse, and client-server file
sharing worms inhabit graphs which are largely bipartite.

EXAMPLES OF NETWORK DIVERSITY
ASSIGNMENTS

E-Mail Topologies: Any individual that utilizes e-mail has
become a target of selfpropagating code. Vulnerabilities
associated with the default configurations of MIME han14
Client . The effect of optimally distributing two software
packages on a bipartite network is clear in (a) and (b).
Bipartite networks such as these are often found in client-
server file sharing topologies. dlers have given rise to
client-side computer viruses . Errors in the parsing code in
major mail transfer agents have resulted in server-side
attacks that are also propagated via e-mail traffic [55].
Secure diversity can be implemented in the stated situation
through the utilization of interchangeable MIME and e-mail
header parsers which are selected by the application
based upon a topology-sensitive algorithm. Replacing one
parser library with another would have no user-discernible
impact on the software’s behavior and performance.

Client-Server File Shares: Network-accessible file shares
have become a popular target for platform-dependent
worm propagation . In many office environments, the file
shares are partitioned into the client and server groups . A
random network topology clearly benefits from a random
distribution of three heterogeneous software packages as
compared to a uniform distribution of a single package .
While the assignment is sub-optimal, the number of edges
which exist between nodes running similar software
packages is clearly reduced.

Communication links between similar systems are
represented by a solid line. This partitioning can be
enforced using firewalls and ACLs. A worm infection on a
client system would be able to self-propagate to any
machine in the file-sharing topology by first attacking a
server machine; likewise, a worm infection on a server
would have to first attack a client before propagating
further. The secure diversity principle can be quite
effectively applied to such a network with only two different
software packages. All previous communication links
between similar systems are replaced by links between

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 3

E-Mail: ignitedmoffice@gmail.com

dissimilar computers, represented by the dotted lines . By
utilizing a second software package for file sharing on the
server systems, it is possible to prevent a client system
from propagating a worm that attacks a vulnerability in the
file sharing subsystem.

Sensor Networks: The networking field that would benefit
greatly from the secure diversity principle is sensor
networks . Enforcing a diversity policy in a sensor network
is less of an administrative challenge, since these large
networks of relatively simple computational and
environmental monitoring nodes are usually controlled by a
single entity, be it a military commander or a building
supervisor. Because the hardware is characterized as
being relatively simple, it is not a major technical challenge
to recreate their comparatively small software suite for the
purposes of introducing variation between individuals in the
population.

Consider the possibility of a system-wide vulnerability that
allows for an attacker to take over a single networked
sensor. A single attack can be used to leap-frog from node
to node across the entire network, as indicated by the
bidirectional links.

Sensor networks can be distributed with multiple operating
systems in ROM. After being dropped into the operational
location, a node can load up one of a multiple set of OSes.
By constructing a network that contains a multiplicity of
operating systems, a single operating system-specific
attack will not be able to propagate across the entire
breadth of the network. Such a randomized distribution of
software packages can reduce the number of possible
node-to-node movements by an attacker.

Reasoning about Diversity While the concept of diversity
assignment schemes may be philosophically appealing,
currently there is no formal system available for reasoning
about diversity assignments. In the following chapter, we
provide a framework that abstracts both the generation and
attacking of diverse software packages.

REFERENCES

[1] WLAN Association , “Introduction to Wireless LANs
” , WLANA Resource Center , 1999 , http://
www.wlana.com/learn/intro.pdf

[2] John Vollbrecht , David Rago , and Robert
Moskowitz. “Wireless LAN Access Control and
Authentication”,White Papers at Interlink Networks
Resource Library,
2001.http://www.interlinknetworks.com/resource/WLAN_Ac
cess_Control.pdf

[3] WLAN Association , “Wireless Networking
Standards and Organizations ” WLANA Resource Center,
April 17, 2002.

http://www.wlana.com/pdf/wlan_standards_orgs.pdf

[4] Interlink Networks , “Wireless LAN Security using
Interlink Networks RAD Series AAA Server and Cisco
EAP-LEAP ” , Application Notes at Interlink Networks
Resource Library, 2002.

http://interlinknetworks.com/images/resource/wireless_lan_
security.pdf

[5] Jesse R. Walker , “Unsafe at any key size ; An
analysis of the WEP encapsulation ” , 802.11 Security
Papers at NetSys.com , Oct 27 , 2000.

http://www.netsys.com/library/papers/walker-2000-10-
27.pdf.

[6] Interlink Networks , “Introduction to 802.1 x for
Wireless Local Area Networks ” , White Papers at Interlink
Networks Resource Library , 2002.

http://www.interlinknetworks.com/resource/Wireless_LAN.p
df

[7] Pierre Trudeau , “Building Secure Wireless Local
Area Networks ” , White Papers at Colubris.com,2001.

http:// download.colubris.com/library/WP-010712-EN-
0100.pdf.

[8] Jean – Paul Saindon , “Techniques to resolve
802.11 and wireless LAN technology in outdoor
environments” , News Article at SecurityMagazine.com,
Aug 08, 2002

