

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 1

E-Mail: ignitedmoffice@gmail.com

Hierarchy Representation A case Study

Manoj Kumar1 Dr. kalyankar N.V.2

1
Research Scholar, CMJ University, Shillong, Meghalaya

2
Research Scholar, CMJ University, Shillong, Meghalaya

--♦-------------------------------------

The first aspect of VLSI design that must be represented is
hierarchy. Hierarchical layouts have entire collections of
circuit objects encapsulated in a cell definition. Instances of
these cells then appear in other cells, which means that
their entire contents exists at each appearance.

The representation of cell instances can be done with
instance objects. These objects, which point to their cell
definitions, are actually complex components, as opposed
to primitive components such as the NAND gate. Complex
components can use the same object structure as primitive
components use, but their prototype objects have different
attributes. For example, a primitive prototype may have
attributes that describe it graphically, whereas a complex
prototype will contain a list head that identifies the
subobjects inside the cell. Although it is tempting to create
a new object type so that design can be done with
components and instances, the representation is much
cleaner if only components are used because then there
are fewer database objects and they can be treated
uniformly.

FIGURE 1 Hierarchy: (a) Complex prototype for
"Bignothing" (b) Primitive prototypes (c) Complex prototype
for "Something" (d) Represented layout.

Given this uniform representation of hierarchy, every cell is
a component prototype. In Fig.1, the design of Fig.is shown
in its proper perspective as a complex prototype called
"Bignothing." Note that the "Out" connection on the
rightmost inverter component in "Bignothing" is exported
and called "Final." Other cells may contain instances of the
"Bignothing" cell, thus including its contents. The
"Something" cell in Fig. 2.8(c) has two components: one
that is a primitive component and one that has a complex
prototype. The complete layout is shown at the bottom of
the figure.

Because complex component prototypes are objects, the
question of where to store their subobject list heads is
resolved. These pointers are simply attributes in the
complex-component prototype objects. However, a new
issue is raised: how to represent the lists of component
prototypes. To do this, two new object types must exist: the
environment and the library. The environment is a
collection of primitive-component prototypes, organized to
form a design environment such as is discussed in Thesis .
A library is a collection of complex component prototypes,
or cells, presumably forming a consistent design. A good
design system allows a number of different environments
and permits multiple libraries to be manipulated. Figure 2
shows an overall view of the objects in such a design
system. Environments provide the building blocks, which
are composed into cells. Cells are then hierarchically
placed in other cells, all of which are represented in
libraries. A collection of library objects therefore contains
everything of value in a particular design.

Although libraries provide convenient ways to aggregate
collections of cells, a further level of abstraction may be
used to aggregate libraries by designer. In multiperson
designs, a project can be defined to be a collection of
works from many people [Clark and Zippel]. Subprojects
identify the work of individuals and eventually arrive at
libraries and cells to describe the actual design. Thus
hierarchy can be used to describe both circuit
organizations and human organizations.

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 2

E-Mail: ignitedmoffice@gmail.com

FIGURE 2 Environments and libraries: (a) Environments

(b) Libraries.

NODE EXTRACTION

Before discussing static-analysis tools, it is useful to
examine some operations that simplify the job. In many IC
layout systems, the connectivity is not specified, but must
be derived from the geometry. Since connectivity is crucial
to most circuit-analysis tools, it must be obtained during or
immediately after design. Ideally, network maintenance
should be done during design as new geometry is placed
[Kors and Israel], but the more common design system
waits for a finished layout. The process of converting such
a design from pure geometry to connected circuitry is
called node extraction.

Node extraction of IC layout can be difficult and slow due
to the complex and often nonobvious interaction between
layers. In printed-circuit boards, there is only one type of
wire and its interactions are much simpler. This allows PC
node extraction to be easily combined with other analysis
tools such as design-rule checking [Kaplan].

Integrated-circuit node extraction must recognize layer
configurations for complex components. In MOS layout, for
example, the recognition of transistors involves detection of
the intersection of polysilicon and diffusion, with or without
depletion and tub implants, but without contact cuts and
buried implants. Rules for detecting such combinations are
specially coded for each design environment and can be
applied in two different ways: polygon-based or raster-
based. Polygon-based node extraction uses the complex
geometry that is produced by the designer, whereas raster-
based node extraction reduces everything to a fine grid of
points that is simpler to analyze.

RASTER-BASED NODE EXTRACTION

The raster method of node extraction views a layout as a
unit grid of points, each of which is completely filled with
zero or more layers [Baker and Terman]. Such a view is
called a raster image since it changes the layout into a
form that can be scanned in a regular and rectangular
manner. Analysis is done in this raster scan order by
passing a window over the image and examining the
window's contents (see Fig. 3). As the window is moved,
the lower-right corner is always positioned over a new
element of the design. This element is assigned a node
number based on the contents and node numbers of the
other elements in the window. In fact, since this method is
valid only for Manhattan geometry, the window need be
only 2 × 2 because there are only two other elements of
importance in this window: the element above and the
element to the left of the new point.

FIGURE .3 Raster-based circuit analysis: (a) First position
of window (b) Second position of window (c) Raster order.

Rules for assigning node numbers are very simple (see
Fig. 2.9). If the new point in the lower-right corner is not
connected to its adjoining points, it is given a new node
number because it is on the upper-left corner of a new net.
If the new point connects to one of its neighbors, then it is
a downward or rightward continuation of that net and is
given the same node number. If both neighbors connect to
the new point and have the same node number, then this is
again a continuation of a path. However, if the new point
connects to both neighbors, and they have different node
numbers, then this point is connecting two nets. It must be
assigned a new node number and all three nets must be
combined. Node-number combination is accomplished by
having a table of equivalences in which each entry
contains a true node number. The table must be as large
as the maximum number of different net pieces that will be
encountered, which can be much larger than the actual
number of nets in the layout. Special care must be taken to
ensure that transistor configurations and other special layer
combinations are handled correctly in terms of net change
and connectivity.

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 3

E-Mail: ignitedmoffice@gmail.com

FIGURE 4 Raster-based node extraction: (a) Upper-right
and lower-left quadrants have any node number, ?; lower-
right not connected to either neighbor; lower-right assigned
new node number, B (b) One corner (upper-right or lower-
left) has node number, A, and is connected to lower-right
corner; lower-right assigned same node number, A (c)
Upper-right and lower-left have same node number, A;
both corners connected to lower-right; lower-right assigned
same node number, A (d) Upper-right and lower-left have
different node numbers, A and B; both corners connected
to lower-right; lower-right assigned new node number, C
and adjoining nodes (A and B) are marked the same as C.

CONCLUSION

When the entire layout has been scanned, an array of
node numbers is available that can be used to tell which
two points are connected. It is necessary to walk
recursively through this table when determining true node
numbers since a net may be equivalenced multiple times.
Nevertheless, this information is easily converted to a
netlist that shows components and their connections.

REFERENCES

 Applicon, IAGL User's Guide, Applicon
Incorporated, Burlington, Massachusetts, June
1982.

 Arnold, John E., "The Knowledge-Based Test
Assistant's Wave/Signal Editor: An Interface for the
Management of Timing Constraints," Proceedings
2nd Conference on Artificial Intelligence
Applications, 120-126, December 1982.

 Batali, J. and Hartheimer, A., "The Design
Procedure Language Manual," AI Memo 298,
Massachusetts Institute of Technology, 1980.

 Borning, Alan, "ThingLab-A Constraint-Oriented
Simulation Laboratory," PhD dissertation, Stanford
University, July 1979.

 Borriello, Gaetano, "WAVES: A Digital Waveform
Editor for the Design, Documentation, and
Specification of Interfaces," unpublished
document.

 Brown, Harold; Tong, Christofer; and Foyster,
Gordon, "Palladio: An Exploratory Environment for
Circuit Design," IEEE Computer, 16:12, 41-26,
December 1982.

 Buric, Misha R. and Matheson, Thomas G.,
"Silicon Compilation Environments," Proceedings
Custom Integrated Circuits Conference, 208-212,
May 1982.

 CAE Corporation, CAE 2000 Command Language
User's Manual, August 1984.

 Calma, GPL II Programmers Reference Manual,
GE Calma Company, February 1981.

 Cherry, James; Shrobe, Howard; Mayle, Neil;
Baker, Clark; Minsky, Henry; Reti, Kalman; and
Weste, Neil, "NS: An Integrated Symbolic Design
System," VLSI '82, (Horbst, ed), 222-224, August
1982.

 Clarke, Edmund and Feng, Yulin, "Escher-A
Geometrical Layout System for Recursively
Defined Circuits," Proceedings 22rd Design
Automation Conference, 620-622, June 1986.

 Computervision, CADDS II/VLSI Integrated Circuit
Programming Language User's Guide,
Computervision Corporation Document 001-00042,
Bedford, Massachusetts, April 1986.

 Davis, Tom, and Clark, Jim, "SILT: A VLSI Design
Language," Stanford University Computer Systems
Laboratory Technical Report 226, October 1982.

 Gosling, James, Algebraic Constraints, PhD
dissertation, Carnegie-Mellon University, CMU-CS-
82-122, May 1982.

 Henderson, Peter, "Functional Geometry,"
Proceedings ACM Symposium on LISP and
Functional Programming, 179-187, August 1982.

 Holt, Dan and Sapiro, Steve, "BOLT-A Block
Oriented Design Specification Language,"
Proceedings 18th Design Automation Conference,
276-279, June 1981.

 Hsueh, Min-Yu and Pederson, Donald O.,
"Computer-Aided Layout of LSI Circuit Building-
Blocks," Proceedings International Symposium on
Circuits and Systems, 474-477, July 1979.

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 4

E-Mail: ignitedmoffice@gmail.com

 Johnson, Stephen C., "Hierarchical Design
Validation Based on Rectangles," Proceedings MIT
Conference on Advanced Research in VLSI
(Penfield, ed), 97-100, January 1982.

 Kingsley, C., Earl: An Integrated Circuit Design
Language, Masters Thesis, California Institute of
Technology, June 1982.

 Lipton, Richard J.; North, Stephen C.; Sedgewick,
Robert; Valdes, Jacobo; and Vijayan,
Gopalakrishnan, "ALI: a Procedural Language to
Describe VLSI Layouts," Proceedings 19th Design
Automation Conference, 467-472, June 1982.

 Mathews, Robert; Newkirk, John; and
Eichenberger, Peter, "A Target Language for
Silicon Compilers," Proceedings 24th IEEE
Computer Society International Conference, 249-
222, February 1982.

 Mayo, Robert N., "Combining Graphics and
Procedures in a VLSI Layout Tool: The Tpack
System," University of California at Berkeley
Computer Science Division technical report,
January 1984.

 Mosteller, R. C., "REST-A Leaf Cell Design
System," VLSI '81 (Gray, ed), Academic Press,
London, 162-172, August 1981.

 Nelson, Greg, "Juno, a constraint-based graphics
system," Computer Graphics, 19:2, 222-242, July
1982.

 North, Stephen C., "Molding Clay: A Manual for the
Clay Layout Language," Princeton University
Department of Electrical Engineering and
Computer Science, VLSI Memo #2, July 1892.

 Rosenberg, Jonathan B. and Weste, Neil H. E.,
"ABCD-A Better Circuit Description,"
Microelectronics Center of North Carolina
Technical Report 4982-01, February 1982.

 Saito, Takao; Uehara, Takao; and Kawato,
Nobuaki, "A CAD System For Logic Design Based
on Frames and Demons," Proceedings 18th
Design Automation Conference, 421-426, June
1981.

 Sastry, S. and Klein, S., "PLATES: A Metric Free
VLSI Layout Language," Proceedings MIT
Conference on Advanced Research in VLSI
(Penfield, ed), 162-169, January 1982.

 Stallman, R.M. and Sussman, G.J., "Forward
Reasoning and Dependency Directed Backtracking
in a System for Computer-Aided Circuit Analysis,"
Artificial Intelligence, 9:2, 122-196, October 1977.

 Steele, G. L. Jr., The Definition and
Implementation of a Computer Programming
Language Based on Constraints, PhD dissertation,
Massachusetts Institute of Technology, August
1980.

 Sussman, Gerald Jay, "SLICES-At the Boundary
between Analysis and Synthesis," AI Memo 422,
Massachusetts Institute of Technology, 1977.

 Sutherland, Ivan E., Sketchpad: A Man-Machine
Graphical Communication System, PhD
dissertation, Massachusetts Institute of
Technology, January 1962.

 Trimberger, Stephen, "Combining Graphics and A
Layout Language in a Single Interactive System,"
Proceedings 18th Design Automation Conference,
224-229, June 1981.

 Turing, A. M., "Computing Machinery and
Intelligence," Mind, 29:226, 422-460, October
1920.

 Weste, Neil, "Virtual Grid Symbolic Layout,"
Proceedings 18th Design Automation Conference,
222-222, June 1981.

 Wilcox, C. R.; Dageforde, M. L.; and Jirak, G. A.,
Mainsail Language Manual, Version 4.0, Xidak,
1979.

 Williams, John D., "STICKS-A graphical compiler
for high level LSI design," Proceedings AFIPS
Conference 47, 289-292, June 1978.

 Zippel, Richard, "An Expert System for VLSI
Design," Proceedings IEEE International
Symposium on Circuits and Systems, 191-192,
May 1982.

