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A polynomial with matrix coefficients is called a matrix 
polynomial, or a polynomial matrix if we regard it as a 
matrix whose elements are polynomials. It is well known 
that matrix polynomials play an important role in the 
analytical theory of elementary divisors, i.e., the theory by 
which a square matrix can be reduced to some normal 
forms (esp. the Smith canonical form and Jordan 
canonical form) of which important applications have 
been made to the analysis of differential and difference 
equations. The motivation for our study of regularity and 
singularity of matrix polynomials comes mainly from two 
sources. One is the study of differential-algebraic 
equations, which is due to the close connection, as we 
have presented in Chapter 2, between regularity and 
singularity of a matrix polynomial and the properties of the 
solutions of the system of Differential-Algebraic Equations 
which is associated with the matrix polynomial; the other 
is the study of the polynomial eigenvalue problems: 

 

where is an n x n matrix polynomial 

of degree l,  

the nonzero vector  (respectively,  is 
the right (respectively, left) eigenvector associated with 

the eigenvalue  

In the last section we saw that DAEs differ in many ways 
from ordinary differential equations. For instance the 
circuit in figure 1.3 lead to a DAE where a differentiation 
process is involved when solving the equations. This 
differentiation needs to be carried out numerically, which 
is an unstable operation. Thus there are some problems 
to be expected when solving these systems. In this 
section we try to measure the difficulties arising in the 
theoretical and numerical treatment of a given DAE. 

Modelling with differential-algebraic equations plays a 
vital role, among others, for constrained mechanical 
systems, electrical circuits and chemical reaction kinetics. 

In this section we will give examples of how DAEs are 
obtained in these fields. We will point out important 
characteristics of differential-algebraic equations that 
distinguish them from ordinary differential equations. 

More information about differential-algebraic equations 
can be found in [2, 15] but also in Consider the 
mathematical pendulum in figure 1.1. By construction the 
rows of Aa are linearly dependent. However, after 
deleting one row the remaining rows describe a set of 
linearly independent equations; the node corresponding 
to the deleted row will be denoted as the ground node. 

As seen in the previous sections a DAE can be assigned 
an index in several ways. In the case of linear equations 
with constant coefficients all index notions coincide with 
the Kronecker index. Apart from that, each index 
definition stresses different aspects of the DAE under 
consideration. While the differentiation index aims at 
finding possible reformulations in terms of ordinary 
differential equations, the tractability index is used to 
study DAEs without the use of derivative arrays. In this 
section we made use of the sequence (3.2) established in 
the context of the tractability index in order to perform a 
refined analysis of linear DAEs with properly stated 
leading terms. We were able to find explicit expressions 
of (3.12) for these equations with index 1 and 2. Let m be 
the pendulum’s mass which is attached to a rod of length 
l [15]. In order to describe the pendulum in Cartesian 
coordinates we write down the potential energy U(x; y) = 
mgh = mgl ¡ mgy where ¡ x(t); y(t) ¢ is the position of the 
moving mass at time t. The earth’s acceleration of gravity 
is given by g, the pendulum’s height is h. If we denote 
derivatives of x and y by x˙ and y˙ respectively, the kinetic 
energy Some additional simple examples: 

Consider the (linear implicit) DAE system: 
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Ey' = A y + g(t) with consistent initial conditions and apply 
implicit Euler: 

E(yn+1 - yn)/h = A yn+1 + g(tn+1) 

and rearrangement gives: 

yn+1 = (E - A h)
-1

 [E yn + h g(tn+1)] 

Now the true solution, y(tn), satisfies: 

E[(y(tn+1) - y(tn))/h + h y''(x)/2] = A y(tn+1) + g(tn+1) 

and defining en = y(tn) - yn, we have: 

en+1 = (E - A h)-1 [E en - h
2
 y''(x)/2] 

e0 = 0, known initial conditions 

where the columns of Aa correspond to the voltage, 
resistive and capacitive branches respectively. The rows 
represent the network’s nodes, so that ¡1 and 1 indicate 
the nodes that are connected by each branch under 
consideration. Thus Aa assigns a polarity to each branch. 

This detailed analysis lead us to results about existence 
and uniqueness of solutions for DAEs with low index. We 
were able to figure out precisely what initial conditions are 
to be posed, namely D(t0)x(t0) = D(t0)x0 and D(t0)P1(t0)x(t0) 
= D(t0)P1(t0)x0 in the index 1 and index 2 case 
respectively. 

These initial conditions guarantee that solutions u of the 
inherent regular ODE (3.5) and (3.10) lie in the 
corresponding invariant subspace. Let us stress that only 
those solutions of the regular inherent ODE that lie in the 
invariant subspace are relevant for the DAE. Even if this 
subspace varies with t we know the dynamical degree of 
freedom to be rankG0 and rankG0+rankG1¡m for index 1 
and 2 respectively 

Traditionally, for polynomial eigenvalue problems, 
especially those of degrees greater than or equal to 2, 
most research results including spectral analysis, 
canonical forms, linearization, Jordan pairs, etc., and 
numerical methods such as numerical algorithms, model 
reduction, and perturbation analysis (conditioning, 
backward error, pseudo spectra), etc., are mainly based 
on the regularity assumption that the matrix polynomial 

is regular, namely, it is square and its 

determinant is not identically equal to zero. For 
more details, see, for example, [17] and [44]. There are 
two major reasons for the regularity assumption. The first 
is that the regular case frequently occurs in applications. 
Take, for example, the quadratic eigenvalue problem 

associated with a gyroscopic system (cf. [44] and the 
references therein: 

 

where positive 

definite, and  Since the leading 
coefficient matrix M is nonsingular, the determinant of the 

quadratic matrix polynomial is a polynomial in of 

degree 2n, and therefore is regular. Such regular 
polynomial eigenvalue problems with a nonsingular 
leading coefficient matrix frequently arise from the 
analysis of structural mechanical and acoustic systems, 
electrical circuit simulation, fluid mechanics, and modeling 
microelectronics mechanical systems; see [44] and the 
references therein. The second reason for the regularity 
assumption is that the study of regular matrix polynomials 
clearly shows the main features of spectral theory. Take, 
for instance, the monograph of Lancaster [35], as well as 
that of Gohberg, Lancaster, and Rodman [17], which has 
regular matrix polynomials as its whole subject. 

However, there are applications from which singular 
polynomial eigenvalue problems of degrees greater than 
or equal to 2, not to mention singular generalized 
eigenvalue problems, arise, as the following examples 
show. 

Example 4.1 (Signal processing) [44] Consider the 
symmetric quadratic eigenvalue problem 

 

where and 

 

Since the leading coefficient matrix is singular and the 

last coefficient matrix  may also be singular, the 

determinant of the quadratic matrix polynomial may 

be identically equal to zero. Therefore, may be a 
singular matrix polynomial.  

Example 4.2 (Vibration of rail tracks) [41] Consider the 
complex quadratic eigenvalue problem 
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where and is singular. 

Since the leading coefficient matrix Mi and the last of 
the corresponding matrix polynomial 

 are singular, may be 
singular. 

In addition, although the study of singular matrix pencils, 
which can be regarded as matrix polynomials of degree 1, 
has a long history (see, for example, Gantmacher [15], 
Chapter XII), some related theoretical and numerical 
aspects have not yet been completely clarified or solved, 
such as geometrical characterization of singular matrix 
pencils (we shall return to this topic in Subsection 4.2.4), 
detecting the regularity or singularity, and the nearness to 
singularity problem for regular matrix pencils (see Byers, 
He, and Mehrmann [4]). 

Thus, from a theoretical and/or numerical point of view, 
the following tasks naturally arise: 

1. To obtain characterizations of the regularity and 
singularity of matrix polynomials. 

2. To detect whether or not a given matrix 
polynomial is regular. 

3. To find a solution of or a useful characterization 
for the nearness to singularity problem for a regular 
matrix polynomial. 

The investigations of the above tasks will be carried out in 
this chapter. In Section 4.2 we present sufficient and 
necessary conditions for the singularity and regularity of 
matrix polynomials, which lay a theoretical foundation for 
the investigations conducted in the subsequent sections 
4.3 and 4.4. In addition, we will present a simple sufficient 
and necessary geometrical characterization of the 
column-singularity of rectangular matrix pencils, as well 
as a canonical form, under equivalence transformations 
(2.17), for 2 x 2 singular quadratic matrix polynomials. In 
Section 4.3 we will present a natural approach to detect 
the regularity or singularity of a given square matrix 
polynomial via the rank information of its coefficient 
matrices. At last, Section 4.4 deals with the nearness to 
singularity problem for square and regular matrix 
polynomials. We will give a definition, some general 
properties, and theoretical characterizations of the 
nearest distance to singularity, and derive two types of 
lower bounds on the nearest distance. 
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