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The simplest place to start an exposition of the basic 
philosophy behind the use of an adapted, irregular grid is in 
one dimension. The most widely used method is the 
equidistributed mesh. The principles of the method were 
later applied to generating efficient computational grids for 
the numerical solution of steady PDEs. For example White 
used a transformation to arc-length coordinates to 
generate equidistributing meshes for the numerical solution 
of two-point boundary value problems. In another approach 
where the one-dimensional mesh was iterated by trying to 
reduce the truncation error of the solution of the underlying 
PDE after each iteration. This is a convenient point at 
which to formally introduce and dene the equidistribution 
principle. 

The main strategy behind the equidistribution idea is quite 
self-explanatory. The idea is to choose a mesh such that a 
measure of either the geometry of the represented 
function, or of the error of the numerical solution, is 
distributed equally between adjacent nodes. This measure 
is prescribed via a user-defined function known as the 
monitor, a positive-definite function of the solution u and/or 

its derivatives of the form. 

 

Later on in this section, we shall introduce various choices 
of monitor function and illustrate their effect on the resulting 
mesh. However, we begin by stating how this measure is 
distributed over the grid in a formal definition. 

Given a mesh representing a physical space in one-

dimension  mesh points 

 such that 

 the equidistribution principle 
can be written 

 

However, in most grid generation applications it is often 
more convenient to think of the equidistribution idea as one 
of a coordinate mapping from a computational, space to a 
physical one. The goal of the grid generation problem then 
becomes one of finding a suitable coordinate mapping or 
transform. This approach is common and forms the basis 
of most grid generation techniques. and, indeed, moving 
mesh methods. Concentrating still on one dimension, we 

define the computational space , so that the mesh 
points in physical space are related to the (usually regularly 

spaced) grid points  in the computational domain. 

Written formally, x is then a mapping from  to x 

 

Within this framework the equidistribution idea is written as 

 

or 

 

Differentiating (2.3) with respect to  once gives the 
equation differentiating yet again yields the equation.  
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Following this approach, the solution of (2.5) with Dirichlet 
boundary conditions 

 

produces an equidistributed grid for the given monitor 
function However, equation (2.5) is non-linear since M 
depends not only on x but also on the solution u. To 
overcome this, an iterative approach is suggested using 
the algorithm 

 

which may be discretised in a semi-implicit style as follows. 

 

The resulting tridiagonal system is easily solved using, for 
example, a Jacobi-iteration method. 

When generating an equidistributed grid for good 
representation of a function or initial condition, the values 
of the monitor are known exactly and the iteration is usually 
quick and successful. However when using this type of 
iterative process for adapting a mesh to give a better 
numerical solution to an underlying differential equation, it 
is common to use an interleaving approach where the grid 
and solution are alternately updated, with the solution 
being interpolated between changing states of the mesh. 

We now consider a few examples of possible monitor 
functions. The simplest such monitor, M =1 produces an 
uniform equi-spaced grid. This monitor has been used in a 
moving mesh method with a moving boundary, as it 
permits attractive theoretical properties of the solution 
within the mesh movement, (details of which shall be 
discussed later in Section (2.3)). Elsewhere, early work 
showed that minimising the error between a numerical 
approximation over a computational cell was equivalent to 
equidistributing the curvature monitor raised to a specific 
power, depending on which error norm was considered. 
However, the most common desired feature of using the 
technique of equidistribution is that the resulting grids have 
high mesh resolutions where solution gradients are steep 
and lower resolutions where the solution is less active. This 
in turn implies that the grid will then provide good 

approximations of derivative terms when using a suitable 
numerical scheme or solver. For this reason it is common 
for the monitor to involve derivative terms of the solution u. 
In this case, the simplest idea is to use the first derivative 
of u with respect to x, i.e. 

 

The effect of the gradient monitor on a monotonic function 
is that the solution values themselves become equi-
spaced, since. 

 

see Figure 2.1 The most popular choice of monitor is the 
arc-length of the solution which has been used in many 
mesh generation and moving mesh methods. The arc-
length monitor is written as 

 

This monitor gives a smoother mesh overall than the 
gradient monitor especially when encountering large 
variations in u, as shown in Figure 2.1 

 

Figure 2.1 Examples of Grids using the gradient monitor 
2.7 (left) and the arc- length monitor 2.8 (right). 

In practice the derivative term in the arclength monitor is 

often scaled by some parameter ,  for example 
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We shall comment more on the choice of monitor functions 
later on in Section 2.3. 

Although equidistribution is the most common tool used 
when generating irregular computational meshes in one-
dimension, the principle does not however extend strictly 
into twodimensions and an alternative is needed. 

One of the earliest and most celebrated of such grid 
generation approaches in two dimensions is given in the 
appendix of Winslow's paper. The main body of which 
contains a method for the solution of a quasi-linear Poisson 
equation on a non-uniform triangular mesh, and the 
accompanying appendix outlines how to form such a mesh 
for regular domains. The ideas presented in this paper 
provide a basis for many of the higher-dimensional grid 
generation methods that followed. Once again, the 
approach is based on a mapping from a computational 

domain to a physical domain  The 
computational domain is represented as a regular 
equilateral triangular mesh composed of 2 sets of straight 
lines associated with the inverse mappings 

 which satisfy the Laplace 
equations 

 

 

The solution to (2.10 and 2.11) results in intersecting equi-

potentials, i.e.  constant and n = constant, with the 
mesh completed using the intersections of the resulting 
sets of lines. The required mesh is found by inverting the 
transforms and putting them in terms of 

 using the Jacobian 

 so that (2.10 and 2.11) become 

 

 

where 

 

These equations can be discretised by the finite difference 
method outlined in the main body of the Winslow article 
and solved via an iterative successive over, relaxation 
algorithm. Due to the averaging property of the Laplace 
equation the constructed mesh is in some sense smooth 
and is also easily applicable to quadrilateral meshes. 
Notice that the method is in no-way linked to a function or 
numerical solution represented on the grid. The purpose of 
this early grid generation algorithm is to produce grids 
adapted to a particular domain, the shape of which is 
imposed via boundary conditions used in conjunction with 
(2.12 and 2.13)  Winslow's method as outlined above was 
adopted by Thompson et al to generate meshes around 
multiple curvilinear bodies used in modeling flow over 
various shaped airfoils. 

Brackbill and Saltzman took advantage of the idea and 
extended the method by allowing discretionary control of 
various mesh properties such as the smoothness and the 
orthogonality of the grid. Their paper highlights that solving 
the Laplace equations (2.10 and 2.11) is equivalent to 
minimizing the functional (2.14) below 

which relates to the smoothness of the mesh, over the 

computational domain . 

 

 

Similarly, by solving the Euler equations associated with 
minimizing the functional related to the orthogonality of the 
mesh, (see (2.15)) an orthogonal grid is produced. 

 

In practice, Brackbill and Saltzman suggested the use of 
linear combinations of such functionals, with the 
preferences of the user implemented through choices of 
coefficients. The overriding theme seems to be that as 
such properties can be measured they can also be 
controlled. In their paper the variational approach was used 
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in conjunction with a numerical solution to a steady PDE 
and results show that, as the chosen functional is 
minimized, so too is the numerical error. Hence we see the 
development of the idea of a choice of functional in higher 
dimensions mirroring the effect of a monitor function in 
one-dimensional equidistribution. 

The methodology of Winslow and Brackbill & Saltzman can 
be thought of as special cases of a more general 
framework outlined later by Huang & Russell Specifically 
presents the following functional (2.16) as a general form 
of a grid adaptation functional. 

 

where G1 and G2 are given symmetric positive definite 
matrices, referred to as the monitor functions. The desired 
mesh transformation is derived from the solution to the 
associated Euler-Lagrange equations. 

 

 

It is easy to see that by choosing G1 = G2 = I this general 
methodology reduces to Winslow's original ideas Moreover 
Huang & Russell give forms of G1 and G2 which 
correspond to Brackbill's mesh generation method . 

Equations (2.17) and (2.18) together with Dirichlet 
boundary conditions form a harmonic map from the 
physical to computational domains and the reliability of the 
method stems from the guaranteed existence and 
uniqueness of the transform, provided that the boundary of 

 is convex and that G1 = G2. Details can be found in 
Dvinsky Again, are given, involving distances from a given 
surface. As an illustrative example, below is the 'arc-length-
like'  

 

Further work by Cao et al proved by the use of Green's 
functions that the mesh can be aligned in certain directions 
and mesh concentrations can also be influenced in certain 
directions by controlling the eigenvectors and eigenvalues 
of the monitor matrices (specifically when G1 = G2). In 
particular, findings from this paper suggest that minimising 

the function I concentrates nodes in regions where the 

eigenvectors of G1,  change significantly. 
This seems to have stemmed from earlier work by Brackbill 
and Knupp The latter followed his own earlier work, this 
time combining the Winslow functional and another 
functional giving a certain amount of directional control 
over the grid by attempting to align mesh lines with a 
prescribed vector field related to the approximate solution. 
Knupp also used the variational approach to grid 
generation, using weights from sets of vector fields, with 
the resulting meshes aligning themselves with the same 
vector fields in some least-squares sense, of course some 
prior knowledge of the appropriate vector fields being 
needed. 

Another interesting example of the application of Winslow 
and other such methods, is outlined in Farmer for use in 
modeling geological features. Here grids are needed which 
honour 'control lines' representing features such as faults. 
These control lines are extended to the boundaries of the 
domain via interpolation, leaving the domain sectioned into 
several rectangular domains, which are then discretised 
using the outlined grid generation techniques. 

This functional framework for finding the desired mesh 
transformation is a popular and convenient one, especially 
when used as the basis of a higher dimensional moving 
method, as we shall see later. For completeness, it is worth 
noticing that in one dimension, minimising the functional 

 

yields the equidistribution equation for a given monitor M. 
Since this general framework has been developed to work 
as part of high dimensional moving methods solution 
procedures for these methods incorporating the mesh 
movement process will be outlined later in Section 2.2 

Alternative two-dimensional analogues of equidistribution 
for grid generation can be found in Baines and Huang & 
Sloan. In the former paper an equation to solve for the 
appropriate monitor function is given as a natural 
generalisation of equation (2.5) 

 

where n is a coordinate along the direction of 

. This translates into a 'local 
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equidistribution in the direction of '. Replacing n by x 
or y gives the equations below, which are of the familiar 
Euler-Lagrange form presented earlier. 

 

These equations are again solved with an interleaving 
approach with Dirichlet conditions. The resulting grid is 
unable to equidistribute M precisely but clusters grid points 
in regions of high M as desired. Further, Baines shows that 
a least squares minimization of a residual of a vector field 
is equivalent to a least squares measure of equidistribution 
on triangular meshes, in some sense extending the work in 
one dimension by Carey & Dinh.  

Elsewhere, the work of Huang and Sloan follows ideas set 
out by Dwyer and Catherall and a local equidistribution is 
obtained by imposing the strict one-dimensional form over 
two sets of coordinate lines. 

It is worth taking time to grasp an understanding of these 
grid generation techniques as a precursor to studying 
moving-mesh methods. As we shall see in the following 
section, many moving grid algorithms are based upon an 
underlying principle for constructing meshes with effective 
grid resolutions. 

REFERENCES 

(1)  S. Adjered and T.E. Flaherty. A moving finite 
element method with error estimation and refinement for 
one dimensional time dependent partial differential 
equations. SIAM Journal on Numerical Analysis, 23:778-
796,1986.  

(2)  D.A. Anderson. Adaptive mesh schemes based on 
grid speeds, A.I.A.A. 1:1311, 1983. 

(3)  M.J. Baines. Grid adaption via node movement. 
Applied Numerical Mathematics, 26:77-96. 1998. 

(4)  M.J. Baines. Least squares and approximate 
equidistribution in multi-dimensions. Numerical Methods 
Partial Differential Equations, 15:605-619, 1999. 

(5)  G.I. Barenblatt. In Similarity, self-similarity, and 
intermediate asymptotics. New York : Consultants Bureau, 
1979. 

(6)  G. Beckett, J.A. Mackenzie, J. Ramage, and D.M. 
Sloan. On the numerical solution of one-dimensional partial 

differential equations using adaptive methods based on 
equidistribution. Technical Report 2000/02. Strathclyde 
Mathematics Research Report, 2000. 

(7)  G. Beckett, J.A. Mackenzie, and M.L. Robertson. A 
moving mesh finite element method for the solution of two-
dimensional  stefan problems. Technical Report 99/26. 
Dept of Mathematics, University of Strathclyde, 1999. 

(8)  K.W. Blake. Contour zoning. Technical Report 
September 1998 MSc Dissertation. Department of 
Mathematics, University of Reading, 1998 

(9)  K.W. Blake. New developments in contour zoning. 
Technical Report May 1999 Numerical Analysis Report, 
Department of Mathematics, University of Reading, 1999. 

(10)  K.W. Blake. The use of moving grids in contour 
zoning. Technical Report 8/99 Numerical Analysis Report, 
Department of Mathematics, University of Reading, 1999. 

(11)  J.G. Blom. J.M. Sanz Serna. and J.G. Verwer. 
On simple moving grid meth ods for one-dimensional 
evolutionary partial differential equations, Journal of 
Computational Physics, 74:191-213, 1988. 

(12)  J.U. Brackbill. An adaptive grid with directional 
control. Journal of Computational Physics, 108:38-50, 
1993. 

(13)  J.U. Brackbill and J.S. Saltzman. Adaptive zoning 
for singular problems in two dimensions. Journal of 
Computational Physics, 46:342-36, 1982. 

(14)  C.J. Budd. S. Chen. and R.D. Russell. New self
 similar solutions of the non-linear schrodinger 
equation with moving mesh computations. Journal of 
Computational Physics, 152:756-789, 1999. 

(15)  C.J. Budd and G. Collins. An invariant moving 
mesh scheme for the non-linear di.usion equation. 
Technical Report 19/08/96, School of 
Mathematics.University of Bath, 1996. 


