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Abstracts – The results of the experiments mapping electron ow in a 2DEG showed two surprising results. The 
_rst was the branched nature of the ow, explained as the eject of a disordered background potential. The second 
was the perseverance of regular interference fringes over the entire, several-micron range of the scans. 
Interference fringes spaced by half of the Fermi wavelength were expected close to the point contact. At 
distances of several hundred nanometers, the various energies present in the electron own would remain in 
phase with one another. As one moves farther from the QPC, however, simple considerations would suggest that 
the various frequencies would disperse and any interference e_ects would be washed out. The survival of the 
interference fringes is seen in full quantum-mechanical simulations with thermal averaging, so we know that a 
complete theory will reproduce them. This full solution does not, however, tell us much about the mechanism 
that allows the fringes to survive. 

In this chapter, we begin by explaining why one might expect the fringes to die 
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INTRODUCTION 

We see the survival of interference fringes beyond the 
thermal length in a full quantum-mechanical simulation. (A) 
shows the quantum-mechanical ux through the system; for 
a discussion of the \branched" nature of the ux, see . In 
(B), we have introduced a movable tip potential and plot 
conductance as a function of the tip position. This scan is 
taken at the Fermi energy. In (C), we have a thermally 
averaged scan of the same region. In this simulation, `T _ 
600nm and the left edge of the scan is approximately 1 _m 
from the point contact out as we move away from the QPC. 
Then we present a simple model for fringe formation, 
appealing only to _rst-order scattering that has a very 
deferent dependence on thermal averaging and shows that 
fringes should survive to the phase-coherence length. We 
will also take a look at an idea, appealing to higher-order 
scattering, that suggests that fringes may occur beyond the 
phase-coherence length. 

At the root of these discussions is the model that we have 
for the potential seen by electrons in a 2DEG. Though we 
found that the donor-atom contribution to the potential was 
the more important component for branching, it is the 
impurity contribution that is more important for fringing. The 
reason is that only the impurities give us strong scattering 

centers, which are necessary to get waves traveling back 
towards the QPC. 

REVIEW OF LITERATURE  

There are many dfferent quantities referred to as \thermal 
lengths," one of which plays a role in our understanding of 
the interference fringes. Before explaining our 
understanding for the perseverance of the interference 
fringes, it is worth spending some time to explain why they 
were unexpected. Recall that the measurements are of 
conductance as a function of tip position. We have shown 
that the signal is dependent on electrons being scattered 
back to the QPC, so we will consider paths with this result. 
There are three sources of scattering to consider: the 
gates, the AFM tip, and the impurities in the crystal 
structure. The gates are clearly strong scatterers, and we 
would expect the same 1For this eject, we ignore the 
small-angle scattering caused by donor atom density 
variations. It of the AFM tip as long as it creates a depletion 
region. The impurity scatterers, however, have 
comparatively small cross sections. Though we may 
consider multiple scattering events from the AFM and the 
gates, we expect any signal involving multiple scattering 
from impurities to be negligible compared to a single-
scattering signal. There are two ways to understand the 
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fringes near the QPC. The _rust is the one that we used in 
constructing our simple model. If the QPC has no open 
channels, so that all conductance comes from tunneling, 
then a wave scattered back to the QPC from the AFM can 
interfere with the outgoing wave and change conductance. 

If there are open channels, which is the more common 
experimental situation, then the outgoing wave is 
distinguishable from the return wave. Here, we look at the 
interference of multiple ways of returning to the QPC. A 
wave scattered from the AFM tip will, in general, be partly 
transmitted back through the QPC and partially reected. 
This reected wave can scatter from the AFM again and 
interfere with the _rst return wave. We thus have, 
essentially, an open Fabret-Perot cavity and we can 
understand the interference fringes within that paradigm. 

MATERIAL AND METHOD  

Simple kinematic considerations suggest that these fringes 
should die out at a thermal length `T given by 

`T = _h2k0=2mkT: (5.1) this length comes from a 
consideration of the spread of energies present in the 
experiments. Though they are performed at low 
temperatures (less than 4:7 K), the implied spread of 
energies is still noticeable. We found `T as the distance at 
which waves di_ering in energy by kT will drift out of phase 
by one radian over the round is unlikely that it would cause 
a path shorter than the phase-coherence length to return to 
the QPC. Trip (QPC to AFM and back). When this 
happens, the interference patterns from the various 
energies present will be su_ciently out of phase with one 
another that the aggregate signal would have no 
discernible fringe pattern. The fringes seen experimentally, 
however, survive well beyond this radius. We look for other 
paradigms of fringe formation to understand this 
observation. 

Here we use a simple, single-scattering model to predict 
the fringes seen beyond the thermal length. The result 
depends on phase-coherent transport at each individual 
energy present, and therefore does not apply beyond the 
phase-coherence length. We will consider single-scattering 
events involving the AFM and the impurities that result in 
waves returning to the QPC, and the interference between 
these various paths. 

Thermal Averaging It was the thermal average, a sum over 
the various energies present in our propagating electrons, 
that gave us the thermal length and the expectation that 
fringes would die out. In this model, we will need to perform 
a thermal averaging integral explicitly. 

The fully correct thermal average is accomplished by an 
integral over energy with the derivative of the Fermi 
function as a weighting function. In order to simplify the 
mathematics of this model, we seek an approximation that 
is an integral over wave vector with Gaussian weighting. 
For the ranges of parameters in this system, such an 
approximation can be made to an acceptable degree of 
accuracy. 

The thermal distribution of energies begins with the 
derivative of the Fermi function at the known temperature T 
and Fermi energy EF: f(E) = h 1 + e(E�EF )=kT i�1 (5.2) 
�f0(E) = H 1 + e(E�EF )=kT i�2 1 kT e(E�EF )=kT : (5.3) 
We wish to approximate this function by a Gaussian while 
preserving the normalization. 

We can do so by taking 

� f0(E) _ 1 2_1=2kT e�[(E�EF )=(2kT)]2 : (5.4) 

The width of this Gaussian was set by matching the 
second-order Taylor series about E = EF for the two 
functions. If we were to match the value at E = EF rather 
than matching the normalization, we would see that the 
shapes of the two curves are very similar. The 
normalization doesn't change this fact; it merely changes 
the overall constant. The majority of the error in this 
approximation comes from this _rst step. 

To transform this exponential into a Gaussian in k, we 
perform further simpli_-cations. We take _ 

E � EF 2kT _2 = k2 � k2 0 4mkT=_h2 !2 (5.5)  

= _h4 16m2(kT)2 (k2 � k2 0)2 (5.6) 

_ h4 16m2(kT)2 H 4k2 0(k � k0)2 I (5.7) 

= h4k2 0 4m2(kT)2 (k � k0)2: (5.8) 

We note that, using the de_nition of the thermal length in 
Eq., 

_h4k2 0 4m2(kT)2 = `2 T ; (5.9) 

Here we show two possible weighting functions for 
comparison. First is the true thermal distribution function, 
the derivative of the Fermi function. Second is our 
approximation, a Gaussian in wave number. The curves 
are calculated for EF = 16 meV and T = 4:7 K. in terms of 
which we take 

� f0(E) _ 1 2_1=2kT e�(k�k0)2`2 T : (5.10) 

This is the weighting function that we will use in performing 
the thermal average. We compare it to the original 



 

Journal of Advances in Science and Technology                     

Vol. III, No. V, May-2012, ISSN 2230-9659 

 

Available online at www.ignited.in Page 3 

E-Mail: ignitedmoffice@gmail.com 

derivative of the Fermi function in though the two curves 
are not identical, it is reasonable to assert that the key 
results from the model will not be ejected. We wish to 
integrate over k rather than E in taking the thermal 
average. Given the dispersion relation E = _h2k2=2m, we 
have dE = (_h2k=m) dk. Again appealing to the values that 
will appear for k0 and `T, we can approximate this 
dispersion relation as linear over the range of the weighting 
function and take dE _ (_h2k0=m) dk. Hence, for a signal 
s(k; r) at _xed wave vector, we have the thermally 
averaged signal s(r) given by s(r) = h2k0 2_1=2mkT Z dk 
e�(k�k0)2`2 T s(k; r) (5.11)  

= _�1=2`T Z dk e(k�k0)2`2 T s(k; r): (5.12) 

The Single-Scattering Model This model is designed to 
have simple mathematics so that we can express an 
analytic result. The approximations made have no ejected 
on the qualitative results, and little eject on the quantitative 
results. We simplify the mathematics by using eikr rather 
than Bessel functions for the two-dimensional s-waves. We 
assume scattering amplitudes proportional to the scattering 
length for each scatterer, and a phase shift equal to the 
scattering length times the wave number. The quantity of 
interest is the ux back through the point contact as a result 
of the scattering. We will look for constructive or 
destructive interference of the returning waves at the point 
contact, and take that as our signal. Take a random 
distribution of s-wave scatterers (the impurities) at the 
points frig with scattering lengths faig, and assume phase-
coherent transport over the roundtrip distances. Let the 
wave from the QPC be just r�1=2eikr, and the scattered 
wave from a point scatterer, measured at the QPC, be 
(cai=ri)eik(2ri+ai). We have called the constant of 
proportionality between the scattering length and amplitude 
c. The actual 

value of this constant will depend on details of the 
scattering potentials irrelevant to this model. Note also that 
there are two factors of r �1=2 

i , one for the fallo_ of the 

wave illuminating the scatterer and one for the fallo_ of the 
scattered wave, and that the phase advances by the 
round-trip distance plus the phase shift. Let the tip be at a 
radius rt and have the scattering length at, giving a similar 
return wave. Finally, to simplify the notation, let us de_ne 
r0 

The full return wave at a single energy is 

X I cai ri e2ikr0 i + cat rt e2ikr0 t : (5.13) 

We are interested in the returning signal, so we take the 
absolute square of this wave. We concentrate on the cross 

terms, which will give rise to the oscillations with rt. The 
cross terms are 

s(r; k) = 2 Re" X I c2 a I a tri rte 2ik (r0i�r0t)#: (5.13) 

We should take note at this point of the terms that we are 
neglecting. First, there are the terms independent of rt. 
Since in any physical system we would be detecting a 
change in the conductance, this constant background 
would simply _gure into our baseline. Second, there is the 
term c2a2t =r2 t , a generally expected monotonic signal 
independent of energy. 

Now we need to thermally average this signal using the 
thermally averaged signal, averaged after the absolute 
square so that it is an incoherent sum, is s(r) = 2_�1=2`T 
Re 

Note that we can bring the selection of the real part outside 
of the integral, since all other terms in the expression are 
real. We carry the imaginary part through the thermal 
average, since it makes the integral easier. Performing the 
resulting Gaussian integral, we have s(r) = 2_�1=2`T Re 

We see the following in this result. The wave scattered 
from the tip interferes with the background of waves 
scattered from the impurities. After the thermal average, 
most of the resulting signal is lost. The pieces that survive 
the average are contributions from those scatterers that 
are close to the same radius2 from the QPC as is the tip. 
Though we can have a signal when r0 t > `T , the thermal 
length still plays 

a role in that it determines the width of the band around r0 t 
that contributes to the thermally averaged signal. 

Note that the fringes predicted by this model are at half the 
Fermi wavelength, as observed. Furthermore, the fringes 
will be oriented perpendicular to the direction of electron 
ow, also as observed. 

CONCLUSION  

We show examples of s(r) at two temperatures for the 
same distribution of scatterers. To make the signal easier 
to observe, we divide out the overall radial dependence of 
the signal strength. We determine that there is a clear r�2 
dependence. However, there is a less obvious factor of 
r1=2 that appears as well, giving the signal strength an 
overall r�3=2 dependence. The r1=2 comes from 2To be 
completely correct, we should substitute \path length" for 
\radius." a density dependence of the signal. If we simply 
take the sum _ of N cosines of random phase, we _nd that 
hj_ji / N1=2. Noting that the number of scatterers in our `T -
wide band increases approximately linearly with radius, we 
have a resulting r1=2 modification of the fringe strength. 
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The radial variation in fringe strength suggested by this 
model is, unfortunately, made difficult to observe 
experimentally by other variations of signal strength. 
Experiments are currently being planned and performed 
that should provide more direct evidence of this model. 
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