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THE SUBJECT EVERYONE LOVES TO HATE 

Concepts and intuitions from probability theory are 
ubiquitous in many aspects of our "non-mathematical" 
lives. When we decide whether to pay more for a car that is 
reported to be "more reliable"; when we choose to 
safeguard our children by living in a "low-crime" 
neighborhood; when we change our diet and exercise 
habits to lower the risk of heart disease; when we accept or 
refuse a job with other options pending; all the above 
actions involve implicit probability judgments. 

Arguably, no other area of mathematics can be said to 
apply so widely, to be so potentially useful in making 
decisions, both intimate and professional, and affords such 
opportunities to make sense of phenomena, both natural 
and social, and empower us through the knowledge we 
gain. Yet, despite this potential for empowerment, people's 
90 attitude towards probability can be summed up in the 
well-worn adage: “There are three kinds of lies”, said 
Disraeli, “lies, damn lies, and statistics.” 

Probability courses are anathema to most graduate 
students. Students in the social sciences are required to 
take a statistics course, and frequently report being able to 
work the textbook problems but having no idea “what they 
mean,” or how to apply them to novel situations (see, e.g., 
Phillips, 1988). They also say that they can make many 
different arguments to solve a problem and they all can 
sound plausible, but they give different answers -- how to 
choose among the plausible alternatives? 

UNRESOLVED PHILOSOPHICAL 
UNDERPINNINGS 

A second source of reasons to look more carefully at 
probability comes out of the philosophy of science.  As we 
shall see below, the meanings of the basic notions of 
probability theory, the ideas of "randomness", "distribution", 
and "probability" itself are still quite controversial. We are 

living in a time when these meanings are not yet fixed but 
are being negotiated by mathematicians and philosophers. 
Due to the lack of cultural construction of basic probabilistic 
concepts, we are, as probabilistic learners, in a similar 
position to the pre-conservational child. As teachers of 
children, having the experience of conflicting probabilistic 
arguments that we cannot resolve, serves as an empathy 
pump, reminding us of how difficult the acquisition of new 
mathematical ideas can be, of the slow pace of conceptual 
change, and that a post-conservational perspective is 
inadequate for helping learners move beyond their pre-
conservational conceptions. 

EPISTEMOLOGY OF PROBABILITY 

Many historians of science would say that the real period of 
"probabilistic revolution" occurred in the 1830's. (see, e.g., 
Hacking, 1990; Cohen, 1990) 91 Among the dominant 
interpretations of the meaning of probability we can identify 
four schools: 

Propensitists: believe that probabilities are essential 
properties of objects. Just as a coin has mass, volume, and 
color, so it also has another property which is a propensity 
when thrown to land on heads 50% of the time and tails 
50% of the time. Discovering these properties can be done 
in many different ways but is analogous to discovering 
other objective properties. 

Frequentists: probabilities are limiting ratios of 
frequencies. When tossing a coin many times, we record 
the ratio of numbers of heads to number of tosses. As the 
number of tosses increases without bound, this ratio 
approaches the probability of throwing a head. 

Subjectivists: probabilities are degrees of belief. When 
tossing a coin, the probability of its coming up heads is 
relative to the beliefs of the coin tosser. We can measure 
subjective degrees of belief by giving people bets at 
various odds and seeing which they judge to be fair bets. 
So, in assessing the degree of their belief in the proposition 
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"the next toss of the coin will be heads", we can offer them 
the choice of taking $5 and "running" or taking $10 if the 
next toss is heads and zero if it's tails. If they judge this 
choice to be a toss-up (pun intended) then we say their 
degree of belief in the proposition is 1/2. If they'd rather 
have the $5, we say their degree of belief is less than 1/2. 

credibilists or Bayesians: this view identifies probability 
with rational degree of belief given the evidence. 
Accordingly, probabilities are not just subjective degrees of 
belief, nor are they objective properties of objects, rather 
they are those degrees of belief which a rational person 
would hold given the evidence she has available. Since 
two people might have different evidence, they might have 
different probabilities for the same 92event. In judging the 
probability of a coin toss, one person seeing a streak of 
heads may 45 judge that the probability of the next toss 
being heads is still 1/2, while another may judge that the 
probability of heads is greater than 1/2. They could both 
have rational degrees of belief if one has evidence of the 
common circulation of biased coins and the other does not. 

This controversy may seem rather theoretical, but consider 
what these differences mean for how we understand and 
apply probability to our daily lives. 

If we are naive frequentists, then, for most situations in our 
life, probability is irrelevant. After all, probabilities are 
limiting ratios of frequencies. But, for an event to have a 
limiting frequency ratio, it must be repeatable. Usually, 
when we act in the world, we consider ourselves to be in a 
unique situation, one unlikely to exactly repeat itself. 

Under this view, probability is irrelevant to most life 
situations. Only in a few narrow contexts, such as 
gambling, can the ideas of probability apply to our life 
decisions. Thus, the naive frequentist, to secure the 
bedrock of well defined probability and normative rules 
dictating “correct action”, sacrifices the connection of 
probability to most life contexts. Of course, a more 
sophisticated frequentist might argue that we can still apply 
probability to a unique situation if we can find the right level 
of description for that situation. If we find a description that 
identifies our unique event with other events and therefore 
forms a class of events, then we can treat the unique event 
as a repeatable event. 

In this view,  a probability is not a property of an object, but 
rather a property of our knowledge of the object. 

Actually, the bedrock is not quite so solid. Even in 
"obviously" repeatable situations such as bets at roulette, 
the frequentist still  must specify a criterion for identifying 
two situations. In order for your roulette bet to be 
repeatable, subsequent bets must be considered "the 

same".  But in the next bet, someone new is standing next 
to you, the air movement is slightly different, ... The 
frequentist is forced to say that these differences don't 
make a difference and therefore the two bets are 
equivalent, but determining which variables can be relevant 
to considering two situations the same or different is a 
serious problem for  the frequentist. The philosopher 
Nelson Goodman  (1983) has shown that one cannot even 
be sure that a single predicate has the same value in two 
different situations. As we saw  in Chapter IV, deciding 
when two situations or objects are the same is an act of 
construction by  the individual involved, and different 
individuals will construct different "sameness" maps. 

In contrast, the subjectivist allows all events to have 
probabilities. Each individual may assign any probability to 
any event. The price of the richness of application 
however, is the lack of guidance. Each of us may have a 
completely different probability for an event to occur. Which 
is right? How can we evaluate our probability, our beliefs?  

At first glance, the Bayesians seem to have the best of 
both worlds above. On the one hand, they allow all events 
to have probabilities, and thus probability is relevant. On 
the other hand, the Bayesian procedure for updating our 
probabilities gives us rational guidance. Outlandish 
probabilities will not stand the test of the evidence. But 
there are problems with the Bayesian view as well. In order 
to "ground" the Bayesian update formula, each event must 
be assigned an initial or "a priori" probability. How is this 
probability to be chosen? One answer is known as the 
"principle of insufficient reason". 

It says, that if you don't know how to assign probabilities, if 
you are "ignorant", then you should assign equal 
probabilities to all possibilities.  But this answer is fraught 
with paradox. Consider the following example: You want to 
know if there is life in orbit around a star, say Mithrandir, in 
a faraway galaxy. Since you know nothing about 
Mithrandir, you decide to assign equal probability to the 
belief that there is life on Mithrandir as to its contrary. But 
now consider the question: are there planets surrounding 
Mithrandir? If, to this, we admit there are three possibilities:  

P1: There is life orbiting Mithrandir. 

P2: There are planets but no life. 

P3: Mithrandir has neither planets nor life. 

Then we are completely ignorant of which possibility 
obtains. By the principle of insufficient reason, we should 
then say that the probability of each event is equal to 1/3. 

Therefore, the combination of P2 and P3 will now have 
probability 2/3 . But the combination of P2 and P3 
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correspond to the assertion that there is no life orbiting 
Mithrandir which, by the principle of insufficient reason, 
was assigned probability 1/2 before. In this manner we can 
create completely contradictory probability assignments 
and it thus appears that there is no rational way to choose 
our prior probabilities. 

Bayesians have found various routes around this difficulty 
but none have been universally adopted. Furthermore, in 
order for Bayesians to be able to use their formula for 
updating probabilities, they must, like the frequentists, be 
able to determine when two events are to "count" as the 
same event. This too is fraught with difficulties. 

I maintain that the confusion commonly experienced by 
first-year probability students is not unrelated to the 
confusion and controversy surrounding these core notions 
of probability.  The difficulties Tversky and Kahneman 
report are not merely computational; they reflect a deep 
epistemological confusion as to what the quantities to be 
calculated are? If the latter conjecture is well-founded, then 
building a connected mathematics learning environment for 
probability might go a long way toward grounding students 
in the subject matter. 

TVERSKY & KAHNEMAN 

Yet a third source of motivation for my focus on probability 
is the research uncovered by Tversky and Kahneman 
(1982) on the persistent errors that people make when 
making judgments under uncertainty. Some of their 
findings have been outlined earlier in this thesis.  Now, we 
will look at their results in greater detail. 

The psychologists Tversky and Kahneman have spawned 
a vast literature which documents people's systematic 
biases in reasoning when reasoning about likelihoods. 

Shafer (1976) finds an interesting way around this dilemma 
which results in a very different notion of probability. 

I have recently come across fascinating research by Cliff 
Konold (e.g. Konold, 1989; 1991) which begins to suggest 
an affirmative answer to this question. In asking people 
questions such as "The weatherman predicts there's a 
70% chance of rain tomorrow and it doesn't rain, what can 
you say about his prediction?", many subjects reported that 
the weatherman was wrong. According to Konold this 
shows they were understanding probability as a way of 
predicting the next single outcome. In doing that, they 
anchored all probabilities to three basic quantities: 0 = no 
possibility, 1 = certain, and 1/2 = don't know. In the 
weatherman case, 70% was interpreted as anchored to 1. 

CONSIDER THE FOLLOWING EXAMPLE 

Linda is 31 years old, single, outspoken, and very bright. 
She majored in philosophy. As a student, she was deeply 
concerned with issues of discrimination and social justice, 
and also participated in anti-nuclear demonstrations. 

Please rank the following statements by likelihood: 

1) Linda is a bank teller. 

2) Linda is active in the feminist movement. 

3) Linda is a bank teller and is active in the feminist 

movement. 

Tversky & Kahneman analyzed people's responses to 
questions of this type. A persistent “misconception” that 
respondents exhibited was to rank Linda's being a bank 
teller and a feminist as more likely than just being a 
banker. This ranking is in violation of the rules of logic 
which require that any statement is more likely than its 
conjunction with another statement. Yet, even when the 
respondents had sophisticated knowledge in logic and 
probability they were somewhat seduced by the incorrect 
answer - seeing it as intuitively right and trying to find some 
way to justify it. 

Tversky & Kahneman explained this misconception as 
stemming from people's use of a "representativeness" 
heuristic in making likelihood judgments. By a 
"representativeness heuristic" they mean that people look 
for an ideal type that represents their answer and then 
judge probability by closeness to this type. In the example 
of Linda, the text leads us to represent Linda as a 
someone who is likely to be a feminist and unlikely to be a 
banker. (So, when we judge the likelihood of the three 
statements, we see Some researchers have compared this 
phenomenon to visual illusions such as the face/vase 
illusion. 

They conceptualize Tversky & Kahnemann kinds of 
examples as "cognitive illusions". that it is unlikely that she 
is a banker, likely that she is a feminist, and yes perhaps 
she could be a banker because maybe it was the only job 
she could get, if she's still true to the feminist type.) 

Tversky and Kahneman have collected many examples of 
this type. In one experiment, people are asked whether 
there are more words in the English language that begin 
with “r” or that have “r” as their third letter. Most people say 
there are more words that begin with “r” whereas in fact 
there are many more of the latter kind. In this case, 
Tversky and Kahneman argue that the error is attributable 
to the heuristic of "availability". People can much more 
easily "retrieve" or recall words that begin with “r” than 
words with “r” in the third position. Since the words 
beginning with “r” are more available to them, they judge 
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them more likely. Another way to describe the availability 
heuristic is to think of people who are recalling words with 
“r” in it as conducting sampling experiments. They sample 
a few words with “r” in them and then compute the relative 
frequency of “r” in the first or third position.  Under this 
interpretation, the error that people make is in wrongly 
attributing randomness to their procedures for generating 
samples of words with “r” in them. 

Yet a third example of the errors Tversky  & Kahneman 
report: 

A group of “subjects” was given the following story: 

A panel of psychologist have interviewed and administered 
personality tests to a group of 30 engineers and 70 
lawyers, all successful in their respective fields. On the 
basis of this information, thumbnail descriptions of the 30 
engineers and 70 lawyers have been written. You will find 
on the form five descriptions, chosen at random from the 
100 available descriptions. For each description, please 
indicate your probability that each person is an engineer, 
on a scale from 0 to 100. 

Subjects in another large group were given the same exact 
story except that there were 30 lawyers and 70 engineers. 
Both groups were then presented with 5 descriptions. For 
example: 

Jack is a 45 year old man. He is married and has 4 
children. He is generally conservative, careful, and 
ambitious. He shows no interest in political and social 
issues, and spends much of his free time on his many 
hobbies, which include home carpentry, sailing and 
mathematical puzzles. 

Subjects in both groups judged Jack to be much more 
likely to be an engineer. 

The data indicate that the prior probability or "base rate" of 
lawyers or engineers did not make an appreciable 
difference. But when the same subjects were asked to 
make the same judgments in the absence of a personality 
description, they did use the base rates. 

Tversky  & Kahneman concluded that in the presence of 
specific descriptions, prior probabilities are ignored. 

Because these systematic errors are repeatable and don't 
seem to go away even when people have had significant 
training in probability, there is a widespread belief that 
humans are incapable of thinking intuitively about 
probability. As many tell the story, the human brain evolved 
at a time when probabilistically accurate judgments were 
not required and, consequently,  resorted to heuristic 
shortcuts that were not so taxing on mental resources. As 

a result, we have been "hard-wired" not be able to think 
about probability and must circumvent our natural thinking 
processes in order to overcome this liability. 

Tversky & Kahneman speculate as to the origin of the 
systematic biases they uncovered in people's assessment 
of likelihoods.  They theorize that people's mental 
resources are too limited to be able to generate 
probabilistically accurate judgments. 

People are forced to fall back on computationally simpler 
heuristics such as the representativeness heuristic they 
describe. 

This view has become very influential and has spawned a 
large literature. 

Interpreters of Tversky and Kahneman seem to come in 
two varieties: those who make the strong claim that our 
brains are simply not wired for doing probability, that 
evolution did not spend our mental resources so 
profligately, and those who simply hold the weaker claim 
that as far as probability is concerned, our intuitions are 
suspect. However, the effect of these claims on probability 
education has been the same -- a reliance on formal 
methods and a distrust of intuitions. 

Recently, I took an introductory graduate course in 
probability and statistics. 

When we came to the section on inverse probabilities, the 
professor wrote down Bayes theorem for calculating 
inverse probabilities and then baldly announced: 

"Don't even try to do inverse probabilities in your head. 
Always use Bayes formula. As Tversky and Kahneman 
have shown, it is impossible for humans to get an intuitive 
feel for inverse probabilities". 

Given the prevalence of this formalist view, it would be of 
great interest if it could be shown that these systematic 
probabilistic biases could be transformed into good 
probabilistic intuitions by a suitable learning environment. 

And after all, we do have some reasons to doubt that the 
lack of robust intuitions about the meanings and 
applications of probabilistic concepts is due to some 
inherent deficiency in the "wiring" of the human brain. It 
may instead stem from a lack of concrete experiences from 
which these intuitions can develop. Rarely, in our everyday 
lives, do we have direct and controlled access to large 
numbers of experimental trials, measurements of large 
populations, or repeated assessments of likelihood with 
feedback. We do regularly assess the probability of specific 
events occurring. However, when the event either occurs 
or not, we don't know how to feed this result back into our 
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original assessment. Suppose we assess the probability of 
some event occurring as say 30%, and the event occurs, 
we have not gotten much information about the adequacy 
of our original judgment. Only by repeated trials can we get 
the feedback we need to evaluate our judgments. 

It is a plausible conjecture that the computer (with its large 
computational resources, capacity to repeat and vary large 
numbers of trials, ability to show the results of these trials 
in compressed time and often in visual form) may be an 
important aid in construction of a learning environment 
which gives learners the kinds of concrete experiences 
they need to build solid probabilistic intuitions. 

In the following chapter, I will argue that, even though 
many of the empirical results of Tversky & Kahneman do 
hold for many people today, concluding from this fact that 
people are innately unable to think about probability is 
unwarranted. This argument will rest on two claims, one 
theoretical and one empirical. The theoretical claim which 
we discussed in Chapter IV is that people's mathematical 
intuitions are constructed, not innately given. Both the lack 
of good learning environments for probability and the 
cultural and epistemological confusion surrounding 
probability do not support the construction of good 
probabilistic intuitions. Personal and cultural development 
can lead to more sophisticated probabilistic intuitions and 
greater mathematical understanding. In the interviews 
presented in the next chapter, we see learners beginning 
this concretizing process and starting down the road 
toward development of strong, reliable probabilistic 
intuitions. 

EMERGENT PHENOMENA 

The fourth source directing the inquiry into probability 
comes from the new fields of systems theory, emergent 
dynamics, and artificial life. There has been a rash of 
publications over the past few years about the difficulties 
people (and scientists) have with understanding emergent 
phenomena - phenomena that are the result of the 
interaction of numerous distributed but locally interacting 
agents. Mitchel Resnick (1991) has written eloquently 
about these difficulties and postulated the existence of a 
"centralized mindset" - a globalized tendency to think in 
terms of top-down, centrally organized, single agent control 
structures. To help people go beyond this mindset, he 
designed the language *Logo, which allows the 
programmer to control thousands of graphic turtles and 
thousands of "patches" (i.e., small pieces of the 
environment on which the turtles move. The patches alone 
can be thought of as cells in a cellular automaton). 

*Logo provides primitives for basic turtle and patch 
calculations as well as communication among turtles and 
patches and interactions between them. 

One of the difficulties encountered when trying to 
understand emergent phenomena is that though the 
resultant pattern is often stably determined, the sequence 
of steps by which it is reached is not at all deterministic. In 
one of the examples from Resnick's (1992) doctoral 
dissertation, a *Logo program simulates the interactions of 
termites and wood chips. Before the program is run, the 
patches are seeded randomly with wood chips and 
termites are scattered randomly on the screen. After 
running the program, you see the termites picking up chips 
and putting down chips and after a few minutes piles of 
chips begin to take clear shape on the screen. How does 
the program work? If one is operating from a centralized 
mindset, one might explain the behavior in terms of a 
planner termite who organizes all the termites into teams 
and tells them each what to do to achieve this effect. But in 
fact the program works by two simple rules: at each time 
step, move randomly. If you come to a wood-chip and are 
carrying one, then I have added primitives to *Logo to 
facilitate working with probability and statistics. Drop it and 
turn around, if you come to a wood chip and aren't carrying 
one, then pick one up. At first glance this procedure doesn't 
seem to be right. You might object: "but the termites will 
start to make piles and then destroy them - this is no way 
to build up a set of piles." 

A key insight into seeing why this works is to note that the 
number of piles can never increase. Since termites are 
always putting down chips on top of already made piles, 
they can never start a new pile. Since in the long run, the 
number of piles will decrease, the average pile size must 
increase and eventually a few large piles appear on the 
screen. 

This example shows some of the characteristic features of 
emergent phenomena. 

The overall eventual pattern of the piles can be said to be 
determined, but on each run of the program, the path that 
the termites take and the details of the pile formation are 
quite different. 

Emergent phenomena are essentially probabilistic and 
statistical. Some interesting questions to ask are: Are the 
difficulties in understanding emergent phenomena due to 
their probabilistic character? Is there such a thing as a 
deterministic mindset by analogy with a centralized 
mindset? Is the change that transpires when we say 
someone understands probability a matter of incremental 
knowledge -- a mere mastering of subject matter in a new 
mathematical area? Or is the change more fundamental -- 
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a global change in the entire way of looking at the world? 
And if there is such a thing as a probabilistic mindset, does 
getting there require a quantitative understanding of 
probability or are qualitative arguments akin to the ones we 
gave in the termite example sufficient, or even preferable? 
The beginnings of answers to these questions will emerge 
from the interviews discussed in the next chapter. 

If the program is run long enough, the number of piles 
should reduce to 1. It is an interesting piece of 
mathematics to try to calculate how many iterations this 
should take. Indeed, one lesson we take from Minsky and 
Papert’s  (1969) “Perceptrons”, is that, while it is highly 
desirable to have a qualitative understanding  of algorithms 
like “termites”, it is also important to understand their 
complexity. 

PROBABILITY SETTING 

The Probability research has been conducted in a variety 
of research settings. Seventeen in-depth interviews 
(typically lasting at least two hours each, and some lasting 
as long as eighteen hours face to face!) were conducted. 
The interviewees consisted of seven women and ten men, 
one high school student, four undergraduates, five 
graduate students, and seven post-graduates. The 
interview format was designed to elicit discussion on four 
main topics: 

1) How to make sense of basic probabilistic notions 
such as  randomness, distribution, 

probability? 

2) How to go about solving particular probability 
problems? The problems were chosen by me for their 
potential for raising fundamental issues and likelihood to 
link to new and related problems. Some were chosen due 
to their counter-intuitive and paradoxical nature. 

3) How to interpret statistics from newspapers, 
articles or books. "How would you design a study to collect 
this statistic?" and 

4) What is your attitude towards thinking 
probabilistically? 

Interviews were not time limited: they were allowed to 
continue until they reached a natural conclusion. Protocols 
for the interview were flexible: a total of 13 separate topics 
had to be covered before the interview was done, but no 
rigid order was imposed by the interviewer. A goal of the 
interview design was to be broad, to get at the relationship 
of the interviewee to Probability in a variety of contexts and 
to explore psychological and social dimensions of this 
relationship as well as the mathematical dimensions. The 

interview was experienced by most interviewees as a 
conversation. Most often, the conversation grew out of the 
responses of the interviewee to the beginning question:  

"What does the word probable mean in ordinary discourse, 
and is this meaning related to the mathematical disciplines 
of Probability & Statistics?" Some interviewees started to 
give their personal accounts of experiences with courses in 
Probability before the initial question was asked. This was 
then followed up and became the germ from which the 
interview sprouted. Along the way the interviewer 
introduced a variety of prepared questions at points where 
they seemed natural. Among the topics explored were the 
relationship of the interviewee to uncertainty (what his/her 
general tolerance is for uncertainty in decision making), 
whether the interviewee participated in gambling activities, 
as well as specific Probability problems such as the "Monty 
Hall" problem recently publicized in the NY Times.  The 
interviewer also presented statistics from newspaper 
articles (e.g., the divorce rate in 1987 is 50%, the reliability 
of a certain form of birth control is 95%), and asked the 
interviewee to interpret the meaning of the statistic, how it 
might have been collected, what kind of study would 
he/she design in order to obtain this statistic. 

Great effort was made by the interviewer to combat the 
inhibitions of the interviewees to talk about their partial and 
imperfect understandings. The interviewer explained his 
belief that all mathematical understanding is partial and a 
tangle of messy concepts. He also modeled the pushing 
through inhibition by talking about his own mathematical 
development and the many confusions and subsequent 
connections made on the road to mathematical 
understanding. 

After the interview topics were covered, all interviewees 
expressed a desire to talk more about the problems and to 
"find out what the right answers were." At this point, the 
interviewer discussed his understanding of the solutions, 
and in cases where discourse did not settle the matter, 
experiments were designed by both parties and conducted 
by the interviewee in order to deepen the understanding of 
the problem. 

In a few cases, the interviews could not be conducted (or 
completed) face to face either because the interviewee 
was no longer in the area or because the amount of time 
needed was more than could be arranged. Some of these 
interviewees elected to continue the interviews over 
electronic mail. In particular interviews on the "envelope 
paradox" were often conducted in this way. In email 
interviews, I sent each interviewee an initial message 
describing what I hoped for in our email dialogue. Most 
interviewees appeared to have no problem adhering to my 
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guidelines and the email medium proved to allow a rich set 
of exchanges. 

In addition to the interviews, some students worked with 
me in computer learning environments. Five students 
elected to develop *Logo programs designed to explore 
some area of probability that they wanted to understand 
better. In order to facilitate its use as an environment of 
exploring probability, I made some modifications to *Logo 
and added some primitives especially useful for 
probabilistic explorations. Among the programs developed 
are a microworld for exploring distributions of gas particles 
in a closed container, an environment for exploring the 
meaning of bell-shaped and binomial distributions, a test 
environment for "Monty Hall" type problems, and various 
projects modeling newspaper statistics, and creating 
physics and ecology simulations. The nature of these 
projects, what was learned through both their design and 
their use will be explored in detail. 
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