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Abstract - In the present paper, we have studied the existence, unigueness and convergence properties of
discrete quartic spline interpolation over uniform mesh, which match the given functional values at mesh points,

mid points and second derivative at boundary points.

Key words and Phrases : Discrete, Quartic Spline, Interpolation Error Bounds Deficient. 1980 AMS Classification
Code : 41A05, 65DO7

-é
v

1. INTRODUCTION positive real number. Consider a real function s(x, h)

Discrete splines have been introduced by Mangsarian and ~ defined over [0, 1] which is such that its restriction 3 on
Schumaker [7] in connection with certain studied of
minimization problem involving differences. Discrete cubic
splines which interpolate given functional values at one
points lying in each mesh interval of a uniform mesh have
been studied in [2]. The case of these points coincide with

[Xifl’xi]is polynomial of degree 4 or less i=1, 2....n.
Then s(x, h) defines a deficient discrete quartic splines with
deficiency 1 if

the mesh points of a non uniform mesh was studied earlier D?}Si (Xi —h)= DrEJ}SHl(Xi ,h)
by Lyche [5], [6]. To compute non-linear splines j=0,12
interactively Malecolm [3] wused discrete splines. (1.1)

Mangasarian and Schumaker [8] used discrete splines for J.
best summation formula. For some different constructive Where the difference operator D, for a function f
aspects of discrete splines, we refer to Schumaker [10],

: ) ; is defined by
Astor and Duris [1], Jia [4] and Rana and Dubey [9]. In this
paper we have obtained existence, uniqueness and
convergence properties of dificient quartic spline f(x+h)= f(x=h
interpolation over uniform mesh which matches the given D% f (x)=f (x), D f (x)= ( )= 1( )
functional values at mesh points and mid points with 2h
boundary condition of second difference.
@ (f(x+h)—2f(x)+ f(x=h))
Let us consider a mesh P on [a, b] which is defined D7 f(x)= h2
by
— pmn) £ _pimny{n}
P:0=X, <X, <..... <X, =b andg =Dn " F=Dg"Dy £(x), m,n=0
. P The class of all deficient discrete quartic splines
For i=1,2,..n. "' shall denote the length of the with deficiency 1 satisfying the boundary condition.
. [X %] oo s . .
rgesh interval , P is said to be a uniform mesh if D,EZ} f(Xoyh)=D£2} f (x,,h)
I is constant for all i. Throughout, h will represent a given
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DI f(x,,h)=Di* f(x,,h)
(1.2)

is denoted by R (4, 1, P, h).

Now writing 204 =X +Xi+1, we introduced the following

interpolating condition for given function f.

s(x,,h)="f(x;,h) 1=0,1,..n

(1.3)

s(e;,h)=f (o;,h)

and pose the following.

PROBLEM : Given h > 0, for what restriction on P does
there exist a unique s(x, h) € R (4, 1, P, h) which satisfies
the condition (1.2) and (1.3)?

2. EXISTENCE AND UNIQUENESS :

Let P(z) be a discrete quartic spline Polynomial on
[0, 1], then we can show that

E(2)= EQ)R,(2)+EQ) Rz(z)+E@R3(z)

+D? E(0)R,(2)+ D] EQ) Ry (2)
(2.1)

Where

Rl(z)zé[GA— (72h? +78)z+48h°z° +967° — 482" |

Rz(z)=6iA[(—24h2 —18)z+48h%z2 +962° — 487"

Ra(z)zaiA[%(h2 +1)2-96h%2% ~1927° + 967* |

R4(z)=$[— (2h? +4)2 +3(5+ 2h?)2* — (17 +4n*)2° + 6’ ) -

R, (z)=$[(2h2 +1)z—-6hz2 + (4h? —7)2° + 62°

1
Where 4h" +5
Now we are set to answer problem A in the following.

Theorem 2.1. For h > 0, there exist a unique deficient
discrete quartic spline s(x, h) € R (4,1,P,h) which satisfies
conditions (1.2) and (1.3).

Proof the Theorem 2.1 : Denoting (X_Xi) by t, O< t< 1.
We can write (2.1) in the form of restriction S (x,h) of the
S(X7 h) on [XI ! Xi+l]

quartic spline as follows :-

s (%, =1 (x)R(2)+ F(%,,1)R,(2)

+f () Ry (2) + P*Ds(x;, h) R, (2)

+P?R;(2) D¥ s(x,,4,h)
where
R/(2)= 6/—\1P“ [6AP* —(72h* +78)(x X, )P° +48h* (x—x.)*P*

+96(x—x;)P —48(x—xi)4]

1

(2407 ~18)(x— )P

Rz (Z):

+48h*(x—x,)?P? +96(x—x,)*P —48(x—x )*]

G:P“ [96(h* +1) (x—X,)P® —96h*(x—x,)*P?

~192(x—x,)*P +96(x—x,)*]
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R4(z):W1PA[—12h2 +8)(x—x )P —(5+2h?)

(X=%)?P? = (L7 +4h*)(x—x,)*P +6(x—x)"]

1
6AP*

Ry(2) = [(2* +1)(x—%)P* ~6h? (x— X, )P

+(4h* =T)(x=x,)*P +6(x—x)"]

Clearly s, (xh) is a quartic on [Xi’xi+1for i=0,1,...n-1 and
satisfies (1.2) and (1.3). Now applying continuity of first

difference of s (xh) at X‘, given by (1,1), we get the

following system of equation -
|(2h? +1)P? + (4h? = 7)h? [ DPs; (x,,,h)
D®s, (x,,h)2|(2h? + 4)P? + (17 + 4h%)h? |
+D&s(,,,h)[(2h? +1)P? + (4h? —7)h? ]

=

! i=1,2,...n Say

Where
1
F =07 [{(24n" +18)P ~ 96N }H(f (x.1) + f (%)

+2{(72h* - 78)P* -96h%) f (x,) +{-96(h* +1) +192h"}(f () + T (2 ,))]

Dr{12} (%;,h)=m; (h)=m,

Write for all i.

Say

We can easily see that excess of the absolute value of the
coefficient of m; over the sum of the absolute value of the

coefficient of Mi-tand Mitin (2.3) under the condition of

theorem 2.1 is given by

d, (h)=6(P? +8h?)

which is clearly positive.

Therefore the coefficient matrix of the system of
equation (2.3) is diagonally dominant and hence invertible.
Thus the system of equation has unique solution. This
complete the proof of theorem 2.1.

3. ERROR BOUND
For a given h > 0, we introduce the set
R, ={jh: jisaninteger}

and define a discrete interval as follows :

[01], =[01]R,

For a function f and three disjoint points X0 X5 X in its

dominant, the first and second decided difference are
defined by

f(x,)— f(x
e, Jf = 0= )
X =X,
X0, Xo [T =%, %, [ f
[Xllxz’x3]f=[ 2 3] [1 z]
and (X3—X1)
respectively.
2 2
For convenience, the write f for th and

{2} {2}
f for By 1(x) and w(f,p) for the modulus of
continuity of f. The discrete norm of a function f over the
interval [0,1], is defined by

I £ r=max| 00

without assuming any smoothness condition on the data f,
we shall obtain in the following the bounds for the error
function over the discrete interval [0,1].

Theorem 3.1 : Suppose s(x, h) is the discrete quartic
spline interpolant of theorem 2.1, then

Il |<C,(h)k(p,h)w(f, p)
(3.1)

lef |<C, (h)k,(p.h)w(f, p)
(3.2)

Available online at www.ignited.in
E-Mail: ignitedmoffice@gmail.com

Page 3



Journal of Advances in Science and Technology
Vol. I1II, No. V, May-2012, ISSN 2230-9659

and le(x)[I< pzk*(P’ h)yw(f, p) X1 =X =X Y11 =%y
(3.3)
Xp0=%1 —h
*
where  K(Ph), ki (p,h)&k*(p,h) .0 positive constant Yio=X;
of pand h
Proof of theorem 3.1. To obtain the error estimate (3.1) X1 =X,
first we replace Y =X, +h
{2} N {2} _
ml(h) by € (Xi)_Dn S(Xi'h)_ fi _Li X390 =X;
Say (3.4) Ve =X — h
To estimate row max norm of the matrix L in (3.4), we Xgy =X +h
shall need the following lemma due to Lyche [5]. X X
31— A
m b n
Lemma 3.1. Let &kl and { J}H be a given sequence V=0
40 — Y
. a=>Db
of non-negative real numbers such that Z ' Z b, V=X

then for any real valued function f defined on a discrete

interval [0,1], we have _ _ _ _
[0.1] X50 =iy X51 = X111 Y50 = Xis Y51 =X

m n
Zai[XiO’Xil _Xik]f _ij[ij’yjl_yjk]f [<w(fY,[1- p|)zai k! X0 =Xi =N, Xe1 =X, Yoo =Xi, Ye1=%; +
i1 =1
X20=Xi,10 %71 = Xiig 1, Y70 =%, —h
X Y €[0]; .
where ! for relevant values of i, j and k. It
may be observed that the right hand side (3.4) is written as =Y
| a} b}
— _ Clearly in (3.5) { 4 and “!7 are sequences of
| (Li) =l Zai [Xio ’ Xil]f ij [yio’ yjl]f | non-negative real numbers such that

(3.5) , ,

D a=> b, =N(P,h)
i-1 j=1

(Say)

a6=b6 —a,_ Thus applying Lemma 3.1 in (3.5) for i=7=j and
= k=1, we get

a, =b, = a1=%[(12h2 +9P%)—48h°)|=h,

—|@2n? +1)P? +1(-7+ 4n?)h? |=b,
(L) I<N(P,hyw(f™ | P
a, =b, =a,=|(2h? +4)P? + (17 + 4h*)h? |=a, (3.6)

1 Now using the equation (2.2) and (3.6) in (3.3) we get
a, = —|[(24n? +30)P? |=b, ” N
P €= () [[<C, (h) K(P,h)w(f*,P)
(3.7)
X0 =1 = Y10 =X
and 0 1= 0= where K(P,h) is some positive function of P and h.
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We next to proceed to obtain a upper bound for e(X),
{2}

replacing m; (h) by & in equation (2.2), we obtain

e(x,h)=P*[Q, (e (x.,) + Qs (e (Xi.1) + M; ()

(3.8)
Now we write M, (f) in term of divided difference as
following :
Mi(f):[ui[XiO'Xil]]_[vj[ij’yjl]f

(3.9)

U= [(12h? + 9)t —24t*h? — 48t + 24t* |=v,
Where A

2
u, :%[(m2 +1)t—6h’t2 + (4% — )t + 6t J=v,

2
u, Z%[_ (2h? + At +3(5+ 2h?)t? — (17 + 4h?)t® +6t4]:V3

u, ZG—PA(24h2 +30)t=v,

X0 =X 1 X1 =, Yo =y Y11= X

and
Xo0 =Xi» Xp1 =N + 1, Y,0=X —h
=Y
X30 =Xis1r X3 =Xjg + h, Y30 = Xjia — h
=Ya
Xpo =0 Xg1=Xi, Ya0=Xis Y1 =X
Clearly observing that
4 4
S u, =SV, =P [(36h? +39)t - 24t°h?
i=1 j=1 6A

2
48t + 24t4]+6p—A[—3t +15t2 — 24 +12t°]
=N"(p,h)

We again applying Lemma 3.1 in (3.9) for i=j=4 and k=1 to
see that

Say

| M, (f)|[<N*(P,hyw(f®, P)
(3.10)

Thus using (3.7) and (3.11) in (3.8) we get the following :
le(x) |<PK*(P,hyw(f®, P)
(3.11)

Where K* (P,h) is a positive constant of P and h, this is the
inequality (3.3) of Theorem (3.1) .

o

We now proceed to obtain an upper bound of &
equation (2.4) we get

sH(x ) =f,Q7 M)+ f,.,.Q° ®) + f, QP ©)

, from

+P?s (x,h)Q (1) + P25 (x, )Q (t)
(3.12)

Thus

6Ae (x,h)=P?[e/Q¥ (t) +e{FQ™ (1)1 +U; (f)

i+1
(3.13)

where Yi(=FQE O+ .08 M)+ f, O (1)

+P?[£,2Q® 1)+ £,2Q® 1) |-6 A £, (x, h)

i+1
By using Lemma 3.1 and first and second divided

difference in U; (f) as follows:-

4 4

U)W (1®,P)3Y 8= b,

i=L =
(3.14)

—p |9(36,39)—48n°Z —48g(31) +96Z (22 +h?)|
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+ p2|-3+30Z —24(3Z7 +h?) + 48Z (22 +h?)]
Where
a, = p [9(129)-48°Z ~48(3Z% +h?) +96Z (27 +h?)}=b,

a,=p 9(24,30)=b,

a,=p?|-0(2.4)+ 9(12.30)Z - g(417)(32 +h?) + 24Z (27 + h?) |,

a,=p?|g(20) ~12h°Z + g(4,-7)(32°% +h? + 24Z(Z% + h?) |=b,

and 07X T X0 T X0 = Ya1: Xy T X=X =Y

Y10 = X110 =X40 = Ya1) Y20=X%,
y21:X+h7X31 =X +h, Y30 =X —h
Xy =Xig t h, Yao=Xi — h

{2}
From equation (3.7) put value of i
el
get upper bound of !

in (3.13) we

. This is inequality (3.2) of theorem

3.1
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