

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 1

E-Mail: ignitedmoffice@gmail.com

Experiences from Implementing and Using the
Communication Link

Rishipal Bangarh

Astt. Prof., DAV College, Pehowa –Kurukshetra (India), Pin. No. -136128

Abstract – An open source project, with an ever changing group of developers, each with their own goals for the
software, is by necessity different from a traditional software project. The major effects of being open source for
the system have been more varied testing, more people doing debugging, and a need to keep the source code
simple. WAP is being used all around the world, and implemented on many phones that only work in certain
parts of the world.

--♦-------------------------------------

INTRODUCTION

Part 1: Discussion of what was done right and what was
done wrong in the project, with regard to architecture,
implementation, and project management.

Part 2: Discussion of how the open source development

model has affected the project.

Part 3: Benchmarks on how the Communication Link
performas at various load levels, and how it recovers from
crashing wap and bearer boxes. Experiment designs are
explained and results presented and discussed.

Part 4: Discussion of feedback from people using the

Communication Link.

SUBJECTIVE EVALUATION

In this section I try to evaluate the system and describe
things we’ve done right and things we’ve done badly.

It has not, however, made it easy to predict development
speed, since at any time it may become necessary to throw
aside the current development task and fix a customer
problem.

In hindsight, the intense pressure for development speed
was probably too intense, and resulted in slower
development speed. Although some amount of pressure is
good for getting people to work faster, and this resulted in
overly optimistic time schedules and when they slipped, in
further stress. From a software engineering and
management point of view, the only redeeming feature of
system’s management is that the software made it to the

market sufficiently early and with sufficient quality in order
to succeed.

Building an open source development community around
system has proved to be a much harder task. Partly this is
because system is of interest to a fairly small group of
people, but mostly it is because specially at the beginning
the development discussions were not open.

The software development process itself has been loosely
based on the spiral model although adapted to an open
source development model, with rather fuzzy goals for
each iteration. In short, the philosophy has been to get at
least something working, so that people can try it out and
even use it in production, and then improve and possibly
rewrite it to make it better. Unlike many projects with this
approach, the system has actually spent much time on the
rewriting: code gets rewritten once it gets too buggy or it
fits too badly with the parts around it that have changed.
We have tried to keep the general architecture and internal
interfaces clean, and thus rewrites have mostly been local.
An excellent example of this is our HTTP implementation:
the first one was made quickly, and served well for almost
a year, and once its bugs and limitations in speed and
features became problematic, it was rewritten completely
from scratch without affecting the code calling more than
by trivial calling convention changes.

A small, but very important things we did correctly was to
set up a ‘nag’ script: a simple script to compile the current
version, directly from the version control system, and mail
the developers any error and warning messages. In
principle, this script does what every developer should do,
but it is hard to force developers to use a particular set of

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 2

E-Mail: ignitedmoffice@gmail.com

compilation options, and even if they are willing, it is easy
to forget one. The script helps by doing it automatically for
all developers, and by doing it systematically every night.
Additionally, when the script was run on multiple platforms,
every night, it helped find several portability problems.

Later, we added some automatic test cases, which can be
run by each developer. Even though the tests are simple,
they do check for all the basic features of system, and
make sure that a change won’t break those. As time goes
by, we add more tests, making it easier to catch more and
more mistakes.

We recommend the nightly automatic compilation test and
the automatic testing for all projects. Like most open
source projects, we have been using a bug tracking system
that anyone can browse. Our use of it has been
unsystematic, though, with most bugs reported via email
on the development mailing list. This has, at times, caused
bugs to be ignored or forgotten. As system gains users,
bug tracking will have to become more systematic.

Quality control in general has received rather little
attenation from system. Except for the simple automatic
test suite described above, the general approach of the
developers has been to make their code or changes
available, via the version control system, as soon as
possible, so that others can participate in the testing. This
is partly good, because the developers do not even have
access to all mobile devices to do a complete test, and
partly bad, because those areas of system that are hard to
test or require specialized hardware, such as the SMS
center protocol implementations, have been tested fairly
lightly. On the whole, things have worked out, though.

EFFECTS OF CHOOSING TO BE OPEN SOURCE

An open source project, with an ever changing group of
developers, each with their own goals for the software, is
by necessity different from a traditional software project.
The major effects of being open source for the system
have been more varied testing, more people doing
debugging, and a need to keep the source code simple.
WAP is being used all around the world, and implemented
on many phones that only work in certain parts of the
world. Thus, for system to be compatible with all phones, it
needs to be tested by people around the world, and in a
traditional software project this would be quite hard to do.
As an open source project, system has users from around
the world, and they have helped in testing against almost
all WAP capable phones in the world. Even though the
testing is informal, i.e., there is no specific set of tests run
by the users for each new link version, it is quite effective:
as soon as a new and incompatible phone becomes

available, or if the developers break system for some
phone, the development mailing list gets bug reports.

This informal and distributed approach to testing has been
applied to most parts of system development. The
assumption is that if we have enough users, with different
usage patterns, all or most code paths are exercised and if
there are problems, we will hear about it. This, of course,
flies in the face of conventional software engineering, but
seems to work for us as it does for many open source
projects.

The distributed approach also applies to debugging. One of
the popular slogans for open source development is “when
you have enough eyes, all bugs are shallow” . This does
not mean that all bugs are easy to solve, but if there is an
urgent problem with system, there will usually be many
people working on finding it. They all work independently,
but communicate about theirs findings and share theories.
The end result is that the process of finding a particular
bug is sped up significantly compared to having only one or
two people working on it.

With many people working on same parts of the code
together, communicating only over e-mail, it is important for
the source code and program structure to be simple, so
that everyone can understand it and so that fewer mistakes
are made because of, for example, complicated interfaces
or arcane programming tricks. Those parts that are
complicated or tricky also tend cause more questions and
more bugs.

The major impact of being open source, however, is more
time spent communicating over e-mail. In a traditional
project, much information is shared only orally, but since e-
mail is the only common communication medium for the
system, more time is spent reading and writing e-mail. On
the other hand, much less time is spent sitting in meetings,
and on the average the communication cost is probably
about the same for system as it would be if the project
wasn’t open source.

REFERENCES

1. Georgiev, T., Georgieva E., Smrikarov, A., (2004).
M-Learning – a New Stage of E-Learning, International
Conference on Computer Systems and Technologies –
CompSysTech’2004.

2. Giunta, G., (2002). Final Report on: Student Use of
Mobile Learning in Italy. Retrieved 14, January 2005 from:

3. http://learning.ericsson.net/mlearning2/project_one
/student_use_year_2_roma_tre.doc

http://learning.ericsson.net/mlearning2/project_one/student_use_year_2_roma_tre.doc
http://learning.ericsson.net/mlearning2/project_one/student_use_year_2_roma_tre.doc

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 3

E-Mail: ignitedmoffice@gmail.com

4. Grumet, A. (2000). Adding Wireless Users To Your
Web Service. Retrieved 14, January 2005 from:
http://rhea.redhat.com/asj/wireless/

5. GSM World - The World Wide Web Site of The
GSM Association, (2004) GSM Facts and Figures.
Retrieved 13, December, 2004 from:
http://www.gsmworld/news/statistics/pdf/gsma_stats_q2_0
4.pdf

6. Helic, D., Maurer, H., Scerbakov, N., (2002).
Discussion Forums As Learning Resources In Web Based
Education. Retrieved 27, April, 2004 from:
http://coronet.iicm.edu/denis/pubs/ijca2004.pdf

7. Henke, H. (2005). Evaluating Web-based
Instruction Design, Retrieved 20, May, 2005 from :
http://scis.nova.edu/~henkeh/story1.htm

8. Hill, T.R., (2002). Leveraging Mobile Technology
for m-Learning: 3rd Generation Threaded Discussions,
Proceedings of the 36th Hawaii International Conference
on System Sciences (HICSS’03).

9. Homan, S., Wood, K., (2003). Taming the Mega-
Lecture: Wireless Quizzing. Retrieved 14, January 2005
from: http://www.campus-
technology.com/campusmobility/article.asp?id=8251

http://rhea.redhat.com/asj/wireless/
http://www.gsmworld/news/statistics/pdf/gsma_stats_q2_04.pdf
http://www.gsmworld/news/statistics/pdf/gsma_stats_q2_04.pdf
http://coronet.iicm.edu/denis/pubs/ijca2004.pdf
http://scis.nova.edu/~henkeh/story1.htm
http://www.campus-technology.com/campusmobility/article.asp
http://www.campus-technology.com/campusmobility/article.asp

