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Abstract – Recently, the area of Mixed Integer Nonlinear Programming (MINLP) has experienced tremendous 
growth and a flourish of research activity. In this article we will give a brief overview of past developments in the 
MINLP arena and discuss some of the future work that can foster the development of MINLP in general and, in 
particular, robust solver technology for the practical solution of problems. 

Mixed-Integer Programs (MIP's) involving logical implications modeled through big-M coefficients, are 
notoriously among the hardest to solve. In this paper we propose and analyze computationally an automatic 
problem reformulation of quite general applicability, aimed at removing the model dependency on the big-M 
coefficients. Our solution scheme defines a master Integer Linear Problem (ILP) with no continuous variables, 
which contains combinatorial information on the feasible integer variable combinations that can be \distilled" 
from the original MIP model. The master solutions are sent to a slave Linear 

Program (LP), which validates them and possibly returns combinatorial inequalities to be added to the current 
master ILP. The inequalities are associated to minimal (or irreducible) infeasible subsystems of a certain linear 
system, and can be separated efficiently in case the master solution is integer. The overall solution mechanism 
resembles closely the Benders' one, but the cuts we produce are purely combinatorial and do not depend on the 
big-M values used in the MIP formulation. This produces an LP relaxation of the master problem which can be 
considerably tighter than the one associated with original MIP formulation. Computational results on two specific 
classes of hard-to-solve MIP's indicate the new method produces a reformulation which can be solved some 
orders of magnitude faster than the original MIP model. 

Numerous industrial problems can be modeled as MINLP problems combining both numeric and integer 
variables. Several methods were proposed to solve these problems. But industrial applications need more than 
solving problems: dynamic problems, over-constrained problems, or explaining solver behavior are features 
required by industrial applications. Explanation-based constraint programming offers such tools. In this paper, 
we show how to apply explanation-based mechanisms for mixed problems thanks to a generic framework. Last, 
some first experimental results are exposed: the overhead due to explanation managing is acceptable and can 
even speed up some resolutions. 

In this work we deal with exponential sum models coming from data acquisition in the empirical sciences. We 
present a two step approach based on Tikhonov regularization and combinatorial optimization, to obtain stable 
parameter estimations, which fit the data. 

------------------------------------------♦------------------------------------- 

INTRODUCTION 

Mixed Integer Nonlinear Programming (MINLP) refers to 
mathematical programming with continuous and discrete 
variables and nonlinearities in the objective function and 
constraints. The use of MINLP is a natural approach of 

formulating problems where it is necessary to 
simultaneously optimize the system structure (discrete) 
and parameters (continuous). 

MINLPs have been used in various applications, including 
the process industry and the financial, engineering, 
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management science and operations research sectors. It 
includes problems in process flow sheets, portfolio 
selection, batch processing in chemical engineering 
(consisting of mixing, reaction, and centrifuge separation), 
and optimal design of gas or water transmission networks. 
Other areas of interest include the automobile, aircraft, and 
VLSI manufacturing areas. 

The needs in such diverse areas have motivated research 
and development in MINLP solver technology, particularly 
in algorithms for handling large-scale, highly combinatorial 
and highly nonlinear problems. 

The general form of a MINLP is 

 

The function f(x, y) is a nonlinear objective function and 
g(x, y) a nonlinear constraint function. The variables x, y 
are the decision variables, where y is required to be 
integer1 valued. X and Y are bounding-box-type 
restrictions on the variables.  

Numerous industrial problems can be modelled as MINLP 
(Mixed Integer Non-Linear Programming) problems 
combining both numeric and integer variables: design of 
water or gas networks, automobile, aircraft, etc.. These 
problems are really hard to solve: they combine the 
combinatorial nature of mixed integer programming and the 
intrinsic difficulty of nonlinear programs. Several methods 
were proposed to solve such problems: branch-and-bound, 
extended cutting plane methods, generalized Bender's 
decomposition, etc. 

But industrial applications need more than solving 
problems. Problems can be dynamic, this implies that 
constraints may be added or removed dynamically. 
Moreover, if no solution is found, the user often needs to 
know why the problem is over-constrained, or why the 
expected solution is inconsistent. 

Constraint programming offers generic models and tools to 
solve combinatorial problems. Furthermore, explanation-
based constraint programming provides tools to solve 
dynamically such problems and maintain explanations 
about the resolution: why a problem has no solution, why 
the optimum bound is reached, or how to improve a 
solution are informations that explanation-based constraint 
programming can provide. Such features are now well 
known for constraint programming over integer variables. 

However only few works proposed solutions to extend it to 
real variables. proposed to extend mac-dbt to solve 
numeric problems thanks to a dynamic domain splitting 
mechanism. But these works solve separately integer 
problems and numeric problems. Moreover, no solution is 
proposed for the main drawback about explanations for 
numeric problems: slow convergence of propagation may 
need to store a huge amount of explanations. This may 
make prohibitive using explanations with these problems. 

Here, we propose both a generic framework to solve 
MINLP problems with explanation-based constraint 
programming and some ideas to decrease the number of 
explanations to store, by filtering redundant or useless 
explanations. 

In the following, we first define MINLP problems, 
explanations and explanation-based constraint 
programming. Then, we introduce and extend propositions 
of. Some propositions are made in order to reduce the 
number of explanations the solver must store. Last, we 
present some experimentation about these propositions 
and explanation-based resolution of MINLP problems. 

A COMBINATORIAL MODEL 

In the spirit of the Tikhonov regularization scheme, with 
previous or historical information about the problem, we get 
additional elements in order to improve our model (3.1). 

We know that the amplitudes should be non-negatives 

and that only of them are strictly positive (represented 

by peaks at ). This behavior can be modeled by imposing 

to each point of the sequence the 

condition with 

 

In this way the solutions should be less smooth than but 
closer to the characteristics of the desired solutions; 

because in the case of , the amplitude should be 

zero, but if more accuracy of should be 
achieved. We deal with the condition that only k of the 

variables should be positives by imposing  

as a constraint. In addition, if we 

calculate in a first step then we can use this 
approximate solution as a default solution for the Tikhonov 
problem, resulting 
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              (1) 

where • denotes the componentwise product between 
vectors. Problem (1) is a mixed integer nonlinear 
programming problem (MINLP). 

In practice, constraints of the type can 

produce tricky values. For instance, if is calculated as 

zero, this could happen either because  or 

because but approaches zero. The last 
behavior is undesired, since we should be detecting a peak 

at , but with the value near zero. On the other hand, 

if , then pj is also calculated as zero, but this time 

with a large value for the corresponding , distorting the 
relationship among the variables. In order to prevent the 
problem of these undesired behaviors, we can model the 
regularization term by adding  

 

to the objective function at (1). This allows us to keep 
values of x and q close to a known approximate solution, 
and so avoid those tricky behaviors. We establish our 
improved MINLP model as 

                                                                                                        
(2) 

Note that this formulation leads to an NP-hard problem. 
Since the original problem is essentially easier, we can 
ask, why to construct a harder one? Two answers appear: 
First, we get more accuracy in calculating the amplitudes, 
by avoiding assigning positive values to amplitudes 
corresponding to the nonlinear parameter values close to 
the chosen ones; and secondly, we can use heuristics, or 
approximating solvers to deal with the combinatorial 
problem, which are computationally less expensive, 
providing efficient tools to cope with the problem. 

ALGORITHMS 

MINLP problems are precisely so difficult to solve, because 
they combine all the difficulties of both of their subclasses: 
the combinatorial nature of mixed integer programs (MIP) 

and the difficulty in solving non convex (and even convex) 
nonlinear programs (NLP). Because subclasses MIP and 
NLP are among the class of theoretically difficult problems 
(NP-complete), so it is not surprising that solving MINLP 
can be a challenging and daring venture. Fortunately, the 
component structure of MIP and NLP within MINLP 
provides a collection of natural algorithmic approaches, 
exploiting the structure of each of the subcomponents. 

Solution Approaches : Methods for solving MINLPs include 
innovative approaches and related techniques taken and 
extended from MIP. Outer Approximation (OA) methods, 
Branch-and-Bound (B&B), Extended Cutting Plane 
methods, and Generalized Bender’s Decomposition (GBD)  
for solving MINLPs have been discussed in the literature 
since the early 1980’s. These approaches generally rely on 
the successive solutions of closely related NLP problems. 
For example, B&B starts out forming a pure continuous 
NLP problem by dropping the integrality requirements of 
the discrete variables (often called the relaxed MINLP or 
RMINLP). Moreover, each node of the emerging B&B tree 
represents a solution of the RMINLP with adjusted bounds 
on the discrete variables. 

In addition, OA and GBD require the successive solution of 
a related MIP problem. Both algorithms decompose the 
MINLP into an NLP sub problem that has the discrete 
variables fixed and a linear MIP master problem. The main 
difference between GBD and OA is in the definition of the 
MIP master problem. OA relies on tangential planes (or 
linearizations), effectively reducing each sub problem to a 
smaller feasible set, whereas the master MIP problem 
generated by GBD is given by a dual representation of the 
continuous space. 

The approaches described above only guarantee global 
optimality under (generalized) convexity. Deterministic 
algorithms for global optimization of non convex problems 
require the solution of sub problems obtained via convex 
relaxations of the original problem in a branch-and-bound 
context, and have been quite successful in solving 
MINLPs. 

ISSUES IN MINLP 

In this section the issues and problems that arise in MINLP 
are discussed by first examining two special cases which 
are embedded in P, namely MILP and NLP problems. 
MINLP problems possess also a number of features which 
are unique in the sense that they do not occur either in 
NLP or MILP problems and these are listed at the end of 
this section. 

MILP problems are combinatorial optimization problems 
with an exponential number of integer feasible points. By 
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fixing the integer variables and solving the resulting LP sub 
problem in the continuous variables only, it is 
comparatively easy to find a local solution to an MILP, that 
is a point that satisfies the first order Kuhn–Tucker 
conditions for a fixed assignment of integer variables. 

The number of these local solutions is exponential and 
since unlike in LP no optimality conditions exist the task of 
choosing the optimum among the local minima is very 
hard. The lack of suitable optimality conditions for MILP 
implies that any MILP algorithm faces the double task of 
finding and verifying an optimal solution. Thus even though 
the algorithm were started at the global optimum it would 
still require a possibly exponential number of iterations to 
recognize the optimality. In the case of a branch–and–
bound algorithm it is therefore usually necessary to 
examine further nodes in the tree once the optimum has 
been found before the optimality is verified. 

A consequence of the combinatorial nature of the problem 
is that for most algorithms there exists a worst case 
example for which the algorithm has to solve an 
exponential number of sub problems. 

Jeroslow gives a trivial class of integer problems for which 
any branch–and–bound algorithm has to expand an 
exponential number of nodes before it discovers that the 
problem is infeasible. 

His result is valid for a wide range of enumerative schemes 
and can be modified to give worst case behavior for almost 
any other algorithm. These worst case examples agree 
with practical experience with integer programming 
algorithms which indicates an exponential growth in the 
computing time as the number of variables is increased. 
Thus, while MILP problems can be solved in a finite 
number of steps, this number grows usually exponentially 
in the number of variables. 

On the other hand, LP and QP problems can be solved in 
polynomial time. For example, Karmarkar gives a 
polynomial time algorithm for LP problems and Gill, 
Murray, Saunders, Tomlin and Wright  show that 
Karmarkar’s algorithm is related to the logarithmic barrier 
function. However, many practical algorithms for LP and 
QP problems use the Simplex method or an active set 
method. For those algorithms there exist worst case 
examples in which they visit a number of vertices which 
increases exponentially with the problem size, but this is 
not very likely to occur in practice. Thus a major difference 
between MILP and LP problems is that – in practice – the 
former require an exponential number of iterations while 
the latter can be solved in a number of iterations that is 
bounded by a polynomial in the problem size. 

LP and QP problems form special classes of NLP 
problems. However, more general NLP problems cannot 
be solved in a finite number of steps and usually an 
iterative scheme has to be applied to solve them. 
Nevertheless, finding a local solution to an NLP problem is 
a much simpler task than finding a solution to an MILP 
problem, since methods like SQP ultimately exhibit a 
second order rate of convergence and the solver 
terminates once the first order conditions are satisfied to 
sufficient accuracy. 

Another difference between MILP and NLP problems is 
that while every local solution of an MILP is a global 
solution, the same is only true for NLP problems under an 
additional convexity assumption. 

MINLP problems combine the two aspects of MILP and 
NLP problems but also have some features which are 
unique. While a strict convexity assumption ensures the 
global uniqueness of an NLP solution, the same does not 
hold for MINLP problems. Loh and Papalambros  give a 
very good illustration of such a situation which is given in 
Figure 1 in a slightly more general form. 

The picture shows the contours of a convex objective 
function and a nonlinear constraint which is indicated by 
the broken thick line and the two axes. The continuous 
feasible region lies between the constraint and the axis 
while the discrete feasible points are the dots that lie within 
the feasible region. The two discrete optima are indicated 
by circled dots and it is also shown where the unique 
continuous minimizer lies. 

 

Figure 1: Multiple Optima for a strictly convex MINLP 
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It is possible to derive upper bounds on the difference 
between an optimal solution to an MILP problem and an 
optimal solution to its LP relaxation. However, these 
bounds are usually very weak since they involve the 
dimension of the problem and a constant that depends on 
the largest absolute subdeterminand of the integral 
coefficient matrix. Werman and Magagnosc generalize 
these bounds to MINLP problems with a separable and 
convex objective and linear constraints. Having discussed 
some of the issues involved in MINLP programming, the 
next two sections provide an overview of methods for 
solving MINLP problems. 

SOFTWARE 

Although theoretical algorithmic ideas for solving MINLP 
have been around for a while, the practical implementation 
of such concepts is much more difficult. Memory 
limitations, efficient numerical linear algebra routines, 
suitable algorithmic tolerances, and determining default 
solver options are some of the key issues faced when 
extending algorithms to large-scale, general-purpose 
software. 

In this section we give a brief and possibly incomplete 
historical overview of practical general purpose MINLP 
software. Commercial MINLP Software Packages : Best to 
our knowledge, the earliest commercial software package 
that could solve MINLP problems was SCICONIC in the 
mid 1970’s. Rather than handling nonlinearities directly, 
linked SOS variables provided a mechanism to represent 
discretized nonlinear functions and allowed solving the 
problem via MIP. In the mid 1980’s Grossman and Kocis  
developed GAMS/DICOPT, a general purpose MINLP 
algorithm based on the outer approximation method. In the 
early 1990’s LINDOs and What’s Best B&B code using the 
Generalized Reduced Gradient (GRG) code for sub 
problems was extended to solve MINLPs. 

Since then a number of excellent academic as well as 
commercial codes have surfaced, including alpha ECP and 
mittlp, both of which are based on extended cutting plane 
methods, and MINLP BB and SBB, which use branch-and-
bound to solve relaxed NLP sub problems. Even on the 
frontier of global MINLP, reliable and large-scale packages 
have materialized including alpha BB and BARON, which 
use convex relaxations in a branch-and bound framework. 

Modeling Languages : The emergence of algebraic 
modeling languages in the mid to late 1980’s and early 
1990’s has greatly simplified the process of modeling, in 
particular the formulation of MINLP type problems. Also, 
from a MINLP solver perspective, a modeling system 
delivers reliable black-box-type function evaluations and 
first and second order derivative information. Finally, the 

common solver interface of a modeling system allows 
MINLP algorithms to deploy existing NLP and MIP solvers 
to solve sub problems in a seamless way. The latter is 
available as part of the MINLP World. MINLP World is a 
forum for discussion and dissemination of information 
about all aspects of MINLP. 

CONCLUSION AND FUTURE WORK 

In this paper, we presented results about using 
explanations with MINLP resolutions. Indeed, giving 
explanations to the user to explain the result is a feature 
that many industrials need. These first results are 
encouraging since the over-head is quite acceptable, all 
the more that heuristics for filtering explanations seems to 
be efficient to decrease this overhead. 

Further works should be led both to test as precisely as 
possible the efficiency of the different heuristics and to 
improve the first implementation used in these 
experimentations. Moreover, this work could be extended 
to apply it to solver collaboration and not only for intra-
solver cooperation. Indeed, explanations (or at least no 
goods) could be valuable information to exchange between 
different kinds of solvers since they give information about 
past computations of each solver. 

We propose a two step procedure to find estimations of 
linear and nonlinear parameters in exponential sum 
models. For the first step we solve a Tikhonov regularized 
problem which gives us the information to be refined in a 
second step. At this second stage we solve a mixed integer 
nonlinear programming problem obtaining good estimates 
for the parameters. We study properties of the solutions for 
this problem by exposing the combinatorial nature of the 
problem. Our procedure requires less initial information to 
successfully estimate the solution. It is enough to have the 
data, and an upper bound on the nonlinear parameters. 
We do not require the initial values to be known. 

Progress in the MINLP arena has been significant in recent 
years, and we are now able to solve large-scale problems 
efficiently using a wide variety of approaches. However, 
MINLP has yet to reach the level of maturity that MIP has 
achieved. While the MIP community has benefited greatly 
from preprocessing to reduce model sizes and to detect 
special structure, MINLP technology is still lagging behind. 
NLP and MINLP preprocessing, similar to global methods, 
will require the delivery of structural information from the 
modeling languages. 

Progress on reliable large-scale NLP codes with restarting 
capabilities will have an immediate impact on MINLP. 
Furthermore, combining individual algorithms (e.g. branch-
and-bound and extended cutting plane method) with 
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sophisticated search strategies (e.g. non-trivial B&B 
selection strategies) and heuristics to quickly determine 
integer solutions will help to close the gap. If research and 
development continues at the current level of activity, 
MINLP will soon achieve a stage of maturity enjoyed by the 
other areas in mathematical programming. 
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