

REVIEW ARTICLE

Study of Political Representations: Diplomatic
Missions of Early Indian to Britain

Journal of
Advances and

Scholarly
Researches in

Allied
Education

Vol. 3, Issue 6,
April-2012,

ISSN 2230-7540

Journal of Advances in
Science and Technology

Vol. III, No. VI, August-
2012, ISSN 2230-9659

FILE DESIGN A LOW POWER CONSUMING
REGISTER: DYNAMIC PROFILING OF

MEASUREMENTS

www.ignited.in

Rashi Malhotra

w
w

w
.i

gn
it

e
d

.i
n

1

 Journal of Advances in Science and Technology
Vol. III, No. VI, August-2012, ISSN 2230-9659

File Design a Low Power Consuming Register:
Dynamic Profiling Of Measurements

Rashi Malhotra

Research Scholar, Singhania University, Rajasthan

Abstract: Register file access in RISC processors is highly asymmetric in nature; a relatively small number of

registers account for a majority of the register file accesses during program execution. This is mostly because the
lifetime of typical program variables is very small and a small number of registers are heavily reused. Also, because
of calling conventions followed in most RISC processors; these are rules enforced by the software during procedure
call on we propose a strategy to determine an application-specific register file banking structure and an appropriate
register mapping strategy that minimizes power dissipation in the register file. A straight forward method to identify
the best bank structure is to exhaustively simulate all possible configurations of banking and choose the
configuration yielding maximum power reduction. But this approach is infeasible if the number of registers is large;
moreover, there are an exponentially large number of different mappings of logical to physical registers (register
allocation decisions).

---------------------------♦-----------------------------

MOTHODOLOGY

We propose a profile-based method to estimate the
optimal bank configuration for a given application by
analyzing access frequency of access to each register.
A register renaming technique is proposed to generate
efficient code for the best bank configuration, which
maximizes power savings on the selected register file
bank configuration. To obtain measurement traces, a
cycle-accurate simulator is used to simulate the micro
architecture-level behavior of a MIPS RISC scalar
microprocessor with a five-stage pipeline as shown in
Figure 1-1. The MIPS processor executes the MIPS-II
ISA. This simulator only traces user level instructions
and records register data access information,
instruction operands’ bypass frequency, and critical
data value switching activity. The five stage pipeline
has a single cycle memory system, zero cache misses,
one interlocked load delay slot, 17 delay cycles
between the issue of an integer multiply and read of
result, and 32 delay cycles between the issue of an
integer divide and the read of the result. A combination
of SPECInt95 measurements and Power stone
measurements [14] are used as a workload. Table 1.1
lists the measurements and input data sets used in
this research, and shows total instruction and cycle
counts. Each measurement was run to completion.
This study only covers predominantly integer
measurements and Table 1.2 shows the distribution of
instruction types in each measurement. Each
measurement is compiled with gcc version 2.7.0 with -
O3 optimization and linked with the new lib standard C
library.

Figure 2-1: Five-stage pipeline data path.

Rashi Malhotra

w
w

w
.i

g
n

it
e

d
.i
n

2

 File Design a Low Power Consuming Register: Dynamic Profiling Of Measurements

1.2 POWER ESTIMATION MODEL

Initially the demand for reducing power in digital
systems was limited to products which are required to
operate under conditions where battery life is an issue,
while power was not a primary concern in the high
performance processor market. In recent years,
however, reducing power dissipation has also become
a critical design goal for high-performance
microprocessors, because the limited power-
dissipation capabilities of packages using inexpensive
air-cooling techniques have begun to constrain further
performance growth.

To date most of the power reduction in high-
performance processors was achieved through supply
voltage reduction and process shrinks. Unfortunately,
there is a limit to how far supply voltages may be
reduced without increasing circuit delays, and the
power dissipated on chip is increasing each year even
as process technology improves.

Meanwhile, the power-dissipation capabilities of
inexpensive air-cooled packages are limited. Hence
other solutions to the power growth problem must be
found. It is the goal of this thesis to explore
architectural level solutions to the power problems in
high-performance superscalar microprocessors. We
attempt to bring the power issue to the earliest phases
of high-performance microprocessor development,
where there is still a significant potential for power
reduction. Register file access in RISC processors is
highly asymmetric in nature; a relatively small number
of registers account for a majority of the register file
accesses during program execution. This is mostly
because the lifetime of typical program variables is
very small and a small number of registers are heavily
reused. Also, because of calling conventions followed
in most RISC processors; these are rules enforced by
the software during procedure call on we propose a
strategy to determine an application-specific register
file banking structure and an appropriate register
mapping strategy that minimizes power dissipation in
the register file. A straight forward method to identify
the best bank structure is to exhaustively simulate all
possible configurations of banking and choose the
configuration yielding maximum power reduction. But
this approach is infeasible if the number of registers is
large; moreover, there are an exponentially large
number of different mappings of logical to physical
registers (register allocation decisions).

We propose a profile-based method to estimate the
optimal bank configuration for a given application by
analyzing access frequency of access to each register.
A register renaming technique is proposed to generate
efficient code for the best bank configuration, which
maximizes power savings on the selected register file
bank configuration.

in a full rail-to-rail swing CMOS circuit is equal to

Where h is the switching capacitance and

d is the supply voltage. Therefore, the average
power consumption of each functional block per CPU
cycle is computed as follows:

Rashi Malhotra

w
w

w
.i

gn
it

e
d

.i
n

3

 Journal of Advances in Science and Technology
Vol. III, No. VI, August-2012, ISSN 2230-9659

Where r is the average data transition frequency of
the node r within the functional block as determined by

the dynamic measurement profiling. The
is the switching capacitance related to node r.

The parameters used in this power estimation model
are based on a 0.6 n well CMOS process technology
with 3.3 V power supply and two layers of metal. The
design of register data and bypassing network is
based on the T0 design [1] and is laid out using Magic
[12]. The layout-to-circuit extraction tool, Space [17], is
used to extract a circuit net list for further circuit
simulation. Space extracts capacitance to the
substrate, fringe capacitance, crossover coupling
capacitance, and capacitance between parallel wires.
Hspice [11], a circuit simulator, is used to simulate the
circuit netlist generated from Space and to determine

the effective switching capacitance, for the
power estimation model. The register data and the
bypass network designs used in this power model are
described in the following subsections. A base-case
scenario power estimation analysis is illustrated in the
summary subsection. CPU design strategy based on
the insight that simplified (as opposed to complex)
instructions can provide higher performance if this
simplicity enables much faster execution of each
instruction. A computer based on this strategy is a
reduced instruction set computer (also RISC). There
are many proposals for precise definitions,[1] but the
term is slowly being replaced by the more descriptive
load-store architecture. Well known RISC families
include DEC Alpha, AMD 29k, ARC, ARM, Atmel AVR,
Blackfin, MIPS, PA-RISC, Power (including PowerPC),
SuperH, and SPARC.

Some aspects attributed to the first RISC-labeled
designs around 1975 include the observations that the
memory-restricted compilers of the time were often
unable to take advantage of features intended to
facilitate manual assembly coding, and that complex
addressing modes take many cycles to perform due to
the required additional memory accesses. It was
argued that such functions would be better performed
by sequences of simpler instructions if this could yield
implementations small enough to leave room for many
registers,[2] reducing the number of slow memory
accesses. In these simple designs, most instructions
are of uniform length and similar structure, arithmetic
operations are restricted to CPU registers and only
separate load and store instructions access memory.
These properties enable a better balancing of pipeline
stages than before, making RISC pipelines

significantly more efficient and allowing higher clock
frequencies

The regfile used in this research is a high performance
dynamic regfile with two read ports and one write port.
This design provides both read and write access in the
same cycle.

During the first half of the cycle, the read bit lines are
pre-charged high and the write bit lines are driven.
Registers are written during the first half of the cycle
while the read data is sensed during the second half of
the cycle. This avoids a bypass path from the write-
back stage of the five-stage pipeline microprocessor
as shown in Figure 1-1.

It is observed that the power dissipation of the read
and write bit lines dominates the regfile power
consumption. Therefore, the power estimation model
for the regfile is based on the transition activity of
read bitlines and write bit lines. The address
decoding of regfile is not included in this power
estimation model. The regfile consists of a 32x32
matrix of storage cells, Figure 1-2, for the 32 32-bit-
wide registers with a column circuitry module, Figure
1-3, at the end of each bit line. The storage cell is a
conventional static RAM cell [18]. The column
circuitry consists of a clocked inverter sense amplifier
to provide faster read port output sensing and it also
controls the read bit line pre-charges, write drive, and
data buffering. The switching capacitance of the read
bit lines, write bit lines, and pre-charging transistors
of the regfile for one of the 32 bit slices is shown in
Table 2.3. In the early days of the computer industry,
programming was done in assembly language or
machine code, which encouraged powerful and easy-
to-use instructions. CPU designers therefore tried to
make instructions that would do as much work as
feasible. With the advent of higher level languages,
computer architects also started to create dedicated
instructions to directly implement certain central

Rashi Malhotra

w
w

w
.i

g
n

it
e

d
.i
n

4

 File Design a Low Power Consuming Register: Dynamic Profiling Of Measurements

mechanisms of such languages. Another general goal
was to provide every possible addressing mode for
every instruction, known as orthogonality, to ease
compiler implementation. Arithmetic operations could
therefore often have results as well as operands
directly in memory (in addition to register or
immediate).

The attitude at the time was that hardware design was
more mature than compiler design so this was in itself
also a reason to implement parts of the functionality in
hardware or microcode rather than in a memory
constrained compiler (or its generated code) alone.
This design philosophy became retroactively termed
complex instruction set computing (CISC) after the
RISC philosophy came onto the scene.

CPUs also had relatively few registers, for several
reasons:

 More registers also implies more time-
consuming saving and restoring of register
contents on the machine stack.

 A large number of registers requires a large
number of instruction bits as register
specifiers, meaning less dense code (see
below).

 CPU registers are more expensive than
external memory locations; large register sets
were cumbersome with limited circuit boards
or chip integration.

An important force encouraging complexity was very
limited main memories (on the order of kilobytes). It
was therefore advantageous for the density of
information held in computer programs to be high,
leading to features such as highly encoded, variable
length instructions, doing data loading as well as
calculation (as mentioned above). These issues were
of higher priority than the ease of decoding such
instructions.

An equally important reason was that main memories
were quite slow (a common type was ferrite core
memory); by using dense information packing, one
could reduce the frequency with which the CPU had to
access this slow resource. Modern computers face
similar limiting factors: main memories are slow
compared to the CPU and the fast cache memories
employed to overcome this are limited in size. This
may partly explain why highly encoded instruction sets
have proven to be as useful as RISC designs in
modern computers. The bypass network consists of
two three-input muxes, one four-input mux, and three
latches. Transmission gate muxes are used in this
design. Figure 1-4 shows the design for a three-input
mux. The latches in this bypass network are similar to
the IBM PowerPC603MS latch designs [15], Figure 1-
5. The bit-slice switching capacitance of mux input,
mux output, mux control line, latch data value, latch
clock input is listed in Table 1.4.

Figure 1-3: Column circuitry for one bit slice.

Rashi Malhotra

w
w

w
.i

gn
it

e
d

.i
n

5

 Journal of Advances in Science and Technology
Vol. III, No. VI, August-2012, ISSN 2230-9659

Table 1.3: Register data switching capacitance.

Table 1.4: Bypass network switching capacitance.

Table 1.5: The average bit slice power consumption
analysis for g721 base case.

The heterogeneous banking of register file with n
registers used in our study. It consists of two banks,
one bank with a small number of registers (0 to k)
and a second bank with a larger number of registers
(k+1 to n-1), with k much smaller than n/2. This non-
hierarchical register file banking is different from
conventional register file banking where register file is
divided into a number of banks of equal size. From
the compiler’s perspective, the structure remains a
single register file. If we can ensure that the
placement of registers is such that most of the
accesses occur to the smaller bank, there will a
significant reduction in the overall power dissipation

Rashi Malhotra

w
w

w
.i

g
n

it
e

d
.i
n

6

 File Design a Low Power Consuming Register: Dynamic Profiling Of Measurements

as the smaller bank has a relatively small bit-line
switching capacitance. Heterogeneous register file
banks differ in number of registers in each bank,
hence making the address decoder and output
selection logic is more complex, which introduces
overheads in area, delay, and power. For most
processor/cache configurations we studied, the
memory access pipeline stage effectively determined
the overall clock cycle time and there was a
reasonable amount of slack available for utilization in
register file access, so the overall performance was
unaffected. The additional circuit does lead to power
overheads, so the structure is worth it if this is offset by
the savings due to the optimization. Our experiments
indicate that this is indeed the case. The area
overhead is real however, and needs to be traded off
against the power savings. To calculate the total
power per cycle, the power estimation model sums up
all the power dissipation per cycle due to data value
transitions. Table 1.5 is an example to show how the
power model calculates the total power per cycle for
the g721 measurement in the base case scenario. The
base case scenario is a common simple regfile, which
always performs one write and two reads per cycle
regardless of the instruction opcode and pipeline state.
The average bit-slice power consumption per cycle is
5.9 pJ and the total power consumption per cycle for
the 32-bit wide data path is 190 pJ.

REFERENCES:-

1. K. Asanovi´c. Vector Microprocessors. PhD
thesis, University of California at Berkeley,
May 1998.

2. T. D. Burd and B. Peters. Power analysis of a
microprocessor: A study of an implementation
of the MIPS R3000. Technical report, ERL
Technical Report, University of California,
Berkeley, May 1994.

3. R. Y. Chen, R. M. Owens,M. J. Irwin, and R.
S. Bajwa. Validation of an architectural level
power analysis technique. In DAC ’98.
Proceedings of the 35th Annual Design
Automation Conference, San Francisco, CA,
June 1998.

4. D. R. Gonzales. Micro-RISC architecture for
the wireless market. IEEE Micro, 19(4):30–37,
July/August 1999.

5. J. L. Hennessy and D. A. Patterson. Computer
Architecture — A Quantitative Approach,
Second Edition. Morgan Kaufmann, 1996.

6. L. Huffman and D. Graves. MIPSpro Assembly
Language Programmer’s Guide. Technical
Report 007-2418-002, Technical Report,
Silicon Graphics, 1996.

7. A. Kalambur and M. J. Irwin. An extended
addressing mode for low power. In

Proceedings of the IEEE Symposium on Low
Power Electronics, pages 208–213, August
1997.

8. G. Kane and J. Heinrich. MIPS RISC
Architecture (R2000/R3000). Prentice Hall,
1992.

9. R. E. Kessler. The Alpha 21264
microprocessor. IEEE Micro, 19(2):24–36,
March/April 1999.

10. P. Landman. High-level power estimation. In
Proceedings ISLPED, pages 29–35, Monterey,
CA, 1996.

11. L. Nagel. SPICE2. Technical Report ERL-
M520, ERL Technical Memo, University of
California, Berkeley, 1975.

12. J. Ousterhout, G. Hamachi, R. Mayo,W.
Scott, and G. Taylor. Magic: A VLSI Layout
System. Proc. 21st Design Automation
Conference, pages 152–159, 1984.

13. J. Rabaey. Digital Integrated Circuites.
Prentice Hall, 1996.

14. J. Scott. Designing the low-power M*CORE
architecture. In Power Driven Micro
architecture Workshop at ISCA98,
Barcelona, Spain, June 1998.

15. V. Stojanovic and V. G. Oklobdzija.
Comparative analysis of master-slave
latches and flip-flops for high-performance
and low-power system. IEEE Journal of
Solid-State Circuits, 34(4):536–548, April
1999.

16. M. Tremblay, B. Joy, and K. Shin. A three
dimensional register data for superscalar
processors. In Proceedings of the 28th
Annual Hawaii International Conference on
System Sciences, pages 191–201, January
1995.

17. N.P. van der Meijs and A.J. van Genderen.
SPACE Tutorial. Technical Report ET-NT
92.22, Technical Report, Delft University of
Technology, Netherlands, 1992.

18. N. Weste and K. Eshraghian. Principles of
CMOS VLSI Design, Second Edition.
Addison Wesley, 1993.

19. V. Zyuban and P. Kogge. Split register data
architectures for inherently low power
microprocessors. In Power Driven Micro
architecture Workshop at ISCA98,
Barcelona, Spain, June 1998.

