

REVIEW ARTICLE

Study of Political Representations: Diplomatic
Missions of Early Indian to Britain

Journal of
Advances and

Scholarly
Researches in

Allied
Education

Vol. 3, Issue 6,
April-2012,

ISSN 2230-7540

Journal of Advances in
Science and Technology

Vol. III, No. VI, August-
2012, ISSN 2230-9659

REVIEW ARTICLE

COMPOSITION OF DIVERSITY
TECHNIQUES

www.ignited.in

Rishi Pal Bangarh1 Dr. K.K. Jain2

w
w

w
.i

gn
it

e
d

.i
n

1

 Journal of Advances in Science and Technology
Vol. III, No. VI, August-2012, ISSN 2230-9659

Composition of Diversity Techniques

Rishi Pal Bangarh1 Dr. K.K. Jain2

1
Research Scholar of Singhania University

2
Asst. Prof., P.G.V. College Gwalior (M.P.)

---------------------------♦-----------------------------

GENERALIZING AND ASSIGNING SOFTWARE
DIVERSITY

Monocultures, like a field of corn, are susceptible to
infections, but genetically diverse cultures, like a
prairie, are extremely robust.

INTRODUCTION

We create a generalized framework for classifying and
analyzing diversified software that is driven not by the
diversity schemes themselves but by how diversified
software appears to an attacker.A single system can
be diversified by running an operating system variant,
such as Linux or OpenBSD. Any single implementation
inside the diversified set can then be diversified again
by running the system on a different base hardware
platform, namely either x86 hardware or SPARC
hardware. If an attacker has a working exploit against
software running on a Linux x86 system that they
wanted to use against an OpenBSD/SPARC system,
the attacker would have to mutate the attack so that it
is effective against both a different operating system
and a different platform.

In general, each diversity technique applied to a single
system creates a pool of diverse systems from the
originating system. Each system inside that pool can
then be diversified by a separate technique to create
additional instances of diverse software. This concept
forms the basis of our diversity model. We consider
every possible instance of software that can be
generated by the application of diversity techniques,
then place the software instances into the same set if
they appear to an attacker as if they are separated by
a single diversity technique. A single piece of software
can be in multiple sets, as it can be used as a seed for
multiple different diversity techniques. The software
instances are the vertices of a hypergraph, with the
sets of diversified.

HARDWARE

A single Apache installation is diversified by the
introduction of different operating systems. One of the
instances is further diversified by the introduction of
multiple hardware platforms. An abstraction of the

model is presented . Variants generated by a single
diversity technique forming the hyperedges. Since the
hyperedges naturally overlap at points where a
software package is diversifiable using more than one
technique, we are able to reason about the use of
multiple diversity techniques on a single software
package. We can abstract the behavior of combining
multiple diversity techniques as being a walk across
intersecting hyperedges on the hypergraph. To an
attacker, the amount of work that he or she must
undertake in order to modify an effective exploit
against one system so that it can compromise
another is a function of the number of hyperedges, or
diversity techniques, which separate the two
instances of the software.We describe how metrics
which derive from attack and defense modeling can
be applied to the hyperedges for purposes of
determining an optimal balance of attack tolerance
and implementation cost. We examine what is
effectively a trivial application of the model by
examining the application of diversity techniques to a
single system , and in more depth in Appendix A. The
remainder of the dissertation is spent examining the
problem of assigning diverse software packages to
networks of systems.

RELATEDWORK

Our model is generated by examining how diversity
appears to an attacker, and can easily be extended to
encompass new diversity techniques and new forms
of attacks. The generation of a diversity hypergraph is
not dependent upon taxonomies of previously
developed diversity techniques. The generation of a
diversity hypergraph for a real system may in fact
lead to new forms of diversity taxonomies, ones
where the effect of diversity on an attacker is central
to the taxonomy. Taxonomies of attack techniques
and methodologies would potentially be useful for
modeling the abilities of an adversary who is
confronted with diversity techniques.

DEFINING THE DIVERSIFICATION
HYPERGRAPH

Definition 1 Let d ∈ D be a single diversity technique

in the set D of all diversity techniques. Let u ∈ U be a

Rishi Pal Bangarh1 Dr. K.K. Jain2

w
w

w
.i

g
n

it
e

d
.i
n

2

 Composition of Diversity Techniques

single binary in the set U of all possible software
binaries. The application of a single diversity technique
in D takes a single instance of software in U and
generates a set of software packages. The software
generated by a single diversity technique is viewed to
be interchangeable with one another as defined by the
bounds of the diversity technique. Elements of the set
of diversified software packages can be grouped
together into equivalence classes, where any element
in the class can be mutated to become another
element in the class using a single diversity technique.
For example, if the diversity technique requires
systems to run separate operating systems, the set of
diverse systems are equivalent under the bounds of
operating system diversification.

Definition 2 The elements d ∈ D form equivalence
relations on the set U. Two software packages u1, u2
∈ U are said to be equivalent under diversification
scheme d if the only difference between the two
elements in U results from the application of the
diversity technique described by d.

Definition 3 Each equivalence relation generated by
the elements of D creates equivalence classes over
the elements contained in U. We denote the
equivalence created by technique d between the two
elements u1 and u2 in U as u1 ≡d u2.

We can loosely classify the equivalence classes into
several categories. Two software packages lie in a
binary equivalence class if the lowest cost modification
required to transform one software package into the
next can be done at the binary level. If a vulnerable
software package is diversified via a binary technique,
the original attack target will still exist; the exact
memory location of the attack target becomes far
harder to find, however, due to the increased space
over which the memory location of the attack target
may exist. An example of a binary-level modification
would be the randomization of the layout of a program
and its linked libraries in memory.

While it is possible to convert one program to another
through bitwise adjustments, the process of doing so
may be extremely time consuming. It could be far
easier do make the modifications at the source code
level and allow the compiler to generate the different
binary. Likewise, if it becomes less costly to convert
one binary package to another via source code
modification than recompilation, then the two software
packages lie in a source equivalence class created by
the diversity technique. Attacks against software
packages which have undergone a source
modification technique must be modified themselves to
be made effective against the newly diversified
software packages. The modifications for the attack
code may be as simple as a single modification in the
attack binary, but given the stage of the development
cycle at which the diversity technique is introduced, it
is likely that a more advanced algorithm or
manipulation scheme would have to be utilized for the

attacker to successfully attack the diversified software
package.

As stated in the introduction, several diversification
strategies exist for the algorithmic modification of
source code, such as adding or deleting nonfunctional
code, code reordering, and randomizing memory
layouts . More invasive techniques which modify data
and control flow are also feasible . Incidentally, these
code reordering and reforming techniques can also be
effective against reverse engineering attacks . Two
software packages may have extremely differing
lineage or development histories but serve the exact
same purpose in a system. If two software packages
provide effectively the same functionality, such as two
distinct flavors of UNIX, then the software lies in a
functional equivalence class. Probably the most
studied method of generating functionally equivalent
software packages uses the N-Version Programming
technique .

The equivalence class generated by any given
diversity technique may not be directly tied to the
stage in the development cycle at which the diversity
technique was applied. For example, consider a
source code modification technique that works by
repositioning variable declarations. The effect on the
final diversified binaries that result from the
technique’s application can also be generated by
directly modifying a compiled binary’s memory
structure. If a system designer uses both the source
and binary-level modifications, all the binaries
generated using the diversity techniques would
reside in the same equivalence class. The use of
multiple diversity techniques on the same piece of
software is described further in the following section.

COMPOSITION OF DIVERSITY TECHNIQUES

Definition 4 A compositions of diversity techniques
is the serial application of the techniques one by one
in order of temporal precedence. Composition
increases the amount of work necessary to convert
an attack which is effective against one software
package to be effective against another one
generated from 23 the first via a set of diversity
techniques. For example, a binary can be diversified
using a compile-time memory space randomization
scheme , then executed on a system which utilizes
an encrypted instruction set . Any attacker who
wishes to take an attack which is effective against a
single binary and mutate it so that it is effective
against a binary which has undergone diversification
using both techniques discussed would have to
simultaneously de-randomize the memory space and
decrypt the instruction set utilized by the diversified
binary. An attacker may not need to manipulate an
attack to solve two diversity techniques at the same
time; if N-version programming is employed in the
selection of the base operating system employed to
run the binaries, an attacker can first solve all the
mutations necessary to combat the introduction of
the foreign operating system and then solve the

Rishi Pal Bangarh1 Dr. K.K. Jain2

w
w

w
.i

gn
it

e
d

.i
n

3

 Journal of Advances in Science and Technology
Vol. III, No. VI, August-2012, ISSN 2230-9659

 issues associated with the instruction set and memory

space manipulations.

Definition 5 The set of all equivalence classes created
by the diversity techniques in D form the hyperedges
E,which along with the elements of U define the
diversification hypergraph H = (U, E).

In order to define properties about interactions
between hyperedges, being able to identify individual
hyperedges becomes a necessity. It is easy to see that
every hyperedge in E can be identified by a diversity
technique in D and a single binary in U which lies in
the hyperedge. Consider two hyperedges which are
created by the same diversity technique and
containing the same binary. The diversity techniques
from each hyperedge would create two equivalence
classes that cover all binaries separated by the single
diversity technique. Since both diversity techniques
are identical, they would create equivalence classes
which contained the same set of elements, and thus
create the same hyperedge.

Definition 6 The composition of diversity techniques
can be formally expressed as a path of hyperedges P
on the diversification hypergraph, where two edges are
adjacent in the path if and only if their intersection
contains at least one element of U.

The act of composing multiple diversity techniques can
be thought of in terms of the diversity hypergraph H as
moving from one binary in U to another by walking
from one adjacent hyperedge to the next. OS
diversification and hardware diversification is applied
to a single Apache web server installation. By
composing these two diversity techniques, the system
engineer would force an attacker who is able to
directly exploit Apache on a Windows machine to
mutate his attack for both a different operating system,
namely OpenBSD, and a different hardware platform.

Definition 7 Temporal Precedence is an ordering on
all diversity techniques necessitated by the stage in
the design process where the techniques must be
applied.

The application of one diversification technique may
undo the work of a previously applied technique.
Therefore, two diversity techniques can be composed
if and only if they respect temporal precedence. A
simple but illustrative example of temporal precedence
can be found in the use of both source code
modification and compile time automatic variable
location randomization diversity techniques. Both
techniques can be utilized to make a single software
package more diverse than its standard, reference
compilation. The temporal hierarchy places any source
code modification before the address space
randomization since it is necessary for any source
code modification techniques to be applied before any

address space randomization techniques are
considered. We deconstruct the temporal hierarchy
into the diversification stages, namely Requirements,

ARCHITECTURE, IMPLEMENTATION, AND
REALIZATION

Both composition and precedence requirements can
be visualized. In the example, software package u1
belongs to two equivalence classes generated by
diversity techniques d1 and d2. The diversity
technique d1 encompasses a large number of
diversified software packages, including u2, which is in
turn further diversified by technique d2. Similarly,
package u3 is related to u1 by diversity technique d2,
and is then further diversified by d1. The diversity
techniques d1 and d2 create hyperedges which form
a path from u1.The generalized view of software
diversity described where diverse software instances
are set elements, diversification techniques are
equivalence classes, and the composition of multiple
diversity techniques forms a path across equivalence
classes. We represent the a simplified view of the
diversification hypergraph H in where the edges
represent individual hyperedges and the vertices
represent software packages in U which lie at the
intersection of two hyperedges. u4 through both u2
and u3. Since d1 and d2 can be applied in any order
without violating temporal precedence, the application
of d2 after d1 to u1 reaches the same software
instance as the application of d1 after d2. Finally, we
show a single instance of the application of d3 to u4,
which is diversification techniques away from u1.
While d3 can be applied to u1, u2, and u3, the
equivalence classes created by such an application
are omitted for the sake of clarity.

ATTACK AND DEFENSE MODELING

The utility of dividing diversified software packages
into equivalence classes is more clear when
examined through the lens of attack modeling. The
deployment of a wide variety of commercial-off-the-
shelf operating systems to a network may be an
effective method of combating a worm which is
designed to attack a single exploit, but is ineffective
against an attacker who is willing to purchase each of
the operating systems and invest the necessary time
required to develop a set of custom exploits against
each OS. Conversely, a compile time randomization
which alters the structure of a binary for each system
would be an effective method of combating a human
being who develops their exploits using a debugger
and a local copy of the software under attack, but
would only delay a worm which uses a search
algorithm to determine the memory locations of the
previously used attack targets.

The diversity schemes discussed are also not equally
effective against all forms of attack. Diversifying the

Rishi Pal Bangarh1 Dr. K.K. Jain2

w
w

w
.i

g
n

it
e

d
.i
n

4

 Composition of Diversity Techniques

instruction sets utilized by different binaries can
combat buffer overflow attacks, but the technique is
ineffective against a resource exhaustion attack.
Producing several versions of the software to utilize
different network protocols may evade a denial of
service attack yet produce binaries which are
vulnerable to a buffer overflow attack.

Definition 8 Let the types of attacks that would take
place be denoted by the set T. We denote the set of
software attacks as A. The mapping of attacks on
software packages to the attack techniques used is
defined as _ :A 7→ T.

For every diversity technique in D there exists a series
of hyperedges in which the vulnerable software
package resides. The attack technique _ (a) employed

by an attack a ∈ A can be mutated to attack another
software package which resides in one of the
vulnerable software package’s equivalence classes.
The system designer can then choose which attacks
are the most threatening to system survivability by
weighting the range of _ to the most critical attack
types. Let M be the set of all implementation metrics
which are of interest to the system designer. The
implementation metrics can be exhibited in several
forms, such as a slowdown associated with the
execution of a binary which underwent modification by
a diversity technique. In a similar fashion, the increase
in runtime memory consumption and program storage
size of the diversified binary are also accounted for
this way. M is not limited to system performance
metrics, however, as the total economic cost incurred
by the implementation of diversification techniques can
be included in this set.

Definition 9 The diversification cost _ is a function
which maps each diversification technique in D and
performance metric in M along with the type of binary
which is being diversified in U to a positive and real
multiplicative factor corresponding to the
implementation cost: _:D ×M ?U 7→ R+

Definition 10 The effectiveness probability _ is a
function which maps each diversification technique in
D and attack technique in _ (A) to a quantity which
reflects the ability of a diversification technique to
resist the specified form of attack. _:D ?_ (A) ?U 7→
[0, 1] Each diversity technique has twometrics with
which it is associated. The diversification cost _ is a
function which quantifies the cost to each system
performance metric associated with implementing
each diversity technique, be it memory consumption,
loss of execution speed, or economic cost of
implementation. The effectiveness probability _ is a
function which quantifies the probability that an attack
technique can be modified to compensate for the
diversity introduced by a given technique. The
effectiveness probability reflects an attacker’s ability to
mutate an attack against any one binary in the
equivalence class to be effective against any other
binary in the equivalence class, and is a function of the
attacker’s skill and the type of attack that is being

combated. Metrics of this type have been employed for
describing code obfuscation techniques to combat
reverse engineering.

The effectiveness probability need not be defined for
the entire set of attack techniques, as indicated by the
choice of _ (A) rather than T(A). The system designer
can choose a subset of attack techniques which he or
she considers to be of the greatest threat and model
the effectiveness of each diversity techniques against
only the attack techniques of interest. Additionally, it is
possible to use an element in u rather than the chain
of all diversity techniques to define the cost and
effectiveness of applying a single diversity technique
even though the effectiveness of a diversity technique
may be a function of previously applied techniques.
Each element in u, by its nature, encodes the set of all
diversity techniques which have been previously
applied in order to reach that point. The concept of a
diversity technique’s cost and effectiveness being a
function of previously applied diversity techniques is
discussed in the following definition.

Definition 11 The property of diversity non-linearity
dictates that the cost and effectiveness of a diversity
technique is a function of the previously applied
diversity techniques. The cost and effectiveness of
the currently applied diversity technique can be
amplified or attenuated, which we term a non-linear
composition. If the cost and effectiveness of a
diversity technique is unaffected by previous
diversity techniques, we define the interaction as
being a linear composition. The effectiveness and
cost of applying a diversity technique to a binary is
not con29 stant for all systems. A diversification
technique that depends upon linking to functionally
equivalent but different standard libraries may cost
more to apply for a closed-source operating system
than for an open-source operating system. Address
space randomization techniques become more
effective as the address space available on the
hardware platform increases. This property of non-
linear composition holds implications for the
development of algorithms for the optimization of
diversity.

Definition 12 We define an attack relevance function
w_: _ (A) 7→ [0..1] which sets the relative
importance of individual attack threats to the system
designer. A similar weighting function, or the cost
relevance w_:M 7→ [0..1], is provided to balance out
the diversification cost.

A system engineer can then form an attack model in
which diversity is involved by choosing an
appropriate attacker profile and use historical data to
generate the effectiveness probability expected for
the diversity techniques against the attacker.
Furthermore, the system engineer can create a
defense model consisting of the set of attacks which
become critical for system defense. A first attempt at
generating a survey of diversity techniques which
examines their effectiveness against various classes

Rishi Pal Bangarh1 Dr. K.K. Jain2

w
w

w
.i

gn
it

e
d

.i
n

5

 Journal of Advances in Science and Technology
Vol. III, No. VI, August-2012, ISSN 2230-9659

 of attacks is presented . Both of these functions are

utilized in the optimization of diversity assignments, as
demonstrated in the following section.

HYPERPATHS AND CHOOSING DIVERSITY

The hypergraph framework presented provides a
method for determining when and how to apply
diversity techniques to a piece of software on a single
server and for an entire network of systems. For a
single piece of software, the system designer is faced
with determining a walk on the hypergraph which
provides the greatest distance

FUNCTIONS

_ - Mapping from attacks to attack techniques

_ - Cost of implementation of a diversity technique as
a function of the diversity technique, cost metric, and
the software being diversified.

_ - Probability of an attack against a diversified
software package as a function of the diversity
technique, the type of attack, and the software being
diversified. between two diverse software packages
while keeping the project under pre-specified cost
bounds. When faced with a network of systems, the
designer must determine a set of diverse software
packages which, when assigned to systems on the
network, span the largest distance in the diversification
hypergraph if they are neighbors of each other on the
network.

In both general cases, we show that determining
optimal solutions to both of these problems is NP
Hard. For all current practical instances of the host-
based diversity assignment problem which can be
currently envisioned, however, heuristic methods can
be used to determine the optimal choice of diversity
techniques. The same is not true for the network
diversity assignment problem.

