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INTRODUCTION 

In this paper, we consider systems of linear /th-

order differential-algebraic equations with 
constant coefficients of the form 

 

where 

 possibly together with initial conditions 

     (2.2) 

Here, the nonnegative integer is the strangeness-
index of the system (2.1), i.e., to get continuous 

solutions of the (2.1), the right-hand side has to 

be continuously differentiable (later, in 
Section 2.2 we shall give an explicit definition of the 
strangeness- index). 

First, let us clarify the concepts of solution of the 
system (2.1), solution of the initial value problem (2.1)-
(2.2), and consistency of the initial conditions (2.2). 

Definition 2.1 A vector-valued function 

 is 

called solution of (2.1) 
if

 exist and for j = 1,..., m the following equations are 
satisfied:  

 

where Aj (j, k) denotes the element of the matrix Aj 
lying on the jth row and the kth column of Aj and f (t) 
:= [fi (t),..., fm(t)]

T
. 

A vector-valued function is 
called solution of the initial value problem (2.1)-(2.2) if 
it is a solution of (2.1) and, furthermore, satisfies 
(2.2). Initial conditions (2.2) are called consistent with 
the system (2.1) if the associated initial value problem 
(2.1)-(2.2) has at least one solution. 

In the last section we saw that DAEs differ in many 
ways from ordinary differential equations. For 
instance the circuit in figure 1.3 lead to a DAE where 
a differentiation process is involved when solving the 
equations. This differentiation needs to be carried out 
numerically, which is an unstable operation. Thus 
there are some problems to be expected when 
solving these systems. In this section we try to 
measure the difficulties arising in the theoretical and 
numerical treatment of a given DAE. 

Modelling with differential-algebraic equations plays a 
vital role, among others, for constrained mechanical 
systems, electrical circuits and chemical reaction 
kinetics. 

In this section we will give examples of how DAEs are 
obtained in these fields. We will point out important 
characteristics of differential-algebraic equations that 
distinguish them from ordinary differential equations. 

More information about differential-algebraic 
equations can be found in [2, 15] but also in Consider 
the mathematical pendulum in figure 1.1. By 
construction the rows of Aa are linearly dependent. 
However, after deleting one row the remaining rows 
describe a set of linearly independent equations, The 
node corresponding to the deleted row will be 
denoted as the ground node. 

As seen in the previous sections a DAE can be 
assigned an index in several ways. In the case of 
linear equations with constant coefficients all index 
notions coincide with the Kronecker index. Apart from 
that, each index definition stresses different aspects 
of the DAE under consideration. While the 
differentiation index aims at finding possible 
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reformulations in terms of ordinary differential 
equations, the tractability index is used to study DAEs 
without the use of derivative arrays. In this section we 
made use of the sequence (3.2) established in the 
context of the tractability index in order to perform a 
refined analysis of linear DAEs with properly stated 
leading terms. We were able to find explicit 
expressions of (3.12) for these equations with index 1 
and 2. Let m be the pendulum’s mass which is 
attached to a rod of length l [15]. In order to describe 
the pendulum in Cartesian coordinates we write down 
the potential energy U(x; y) = mgh = mgl ¡ mgy where ¡ 
x(t); y(t) ¢ is the position of the moving mass at time t. 
The earth’s acceleration of gravity is given by g, the 
pendulum’s height is h. If we denote derivatives of x 
and y by x˙ and y˙ respectively, the kinetic energy 
Some additional simple examples: 

Consider the (linear implicit) DAE system: 

Ey' = A y + g(t) with consistent initial conditions and 
apply implicit Euler: 

E(yn+1 - yn)/h = A yn+1 + g(tn+1) 

and rearrangement gives: 

yn+1 = (E - A h)
-1

 [E yn + h g(tn+1)] 

Now the true solution, y(tn), satisfies: 

E[(y(tn+1) - y(tn))/h + h y''(x)/2] = A y(tn+1) + g(tn+1) 

and defining en = y(tn) - yn, we have: 

en+1 = (E - A h)
-1

 [E en - h2 y''(x)/2] 

e0 = 0, known initial conditions 

where the columns of Aa correspond to the voltage, 
resistive and capacitive branches respectively. The 
rows represent the network’s nodes, so that ¡1 and 1 
indicate the nodes that are connected by each branch 
under consideration. Thus Aa assigns a polarity to 
each branch. 

This detailed analysis lead us to results about 
existence and uniqueness of solutions for DAEs with 
low index. We were able to figure out precisely what 
initial conditions are to be posed, namely D(t0)x(t0) = 
D(t0)x0 and D(t0)P1(t0)x(t0) = D(t0)P1(t0)x0 in the index 1 
and index 2 case respectively. 

These initial conditions guarantee that solutions u of 
the inherent regular ODE (3.5) and (3.10) lie in the 
corresponding invariant subspace. Let us stress that 
only those solutions of the regular inherent ODE that 
lie in the invariant subspace are relevant for the DAE. 
Even if this subspace varies with t we know the 
dynamical degree of freedom to be rankG0 and 
rankG0+rankG1¡m for index 1 and 2 respectively 

Based upon these concepts, we are naturally 
interested in the following questions: 

1 Does the behaviour of the system (2.1) differ 
from that of a system of first-order Differential-
Algebraic EquationsSs into which (2.1) may be 
transformed in the same way as in the classical theory 
of ODEs? 

2 Does the system (2.1) always have solutions? 
If it has, how many  solutions do exist? Under 
which conditions does it have unique  solutions? 

3 If the system (2.1) has solutions, how smooth 
is the right-hand side f (t)  required to be? 

4 Which conditions are required of consistent 
initial conditions? 

5 Under which conditions does the initial value 
problem (2.1)-(2.2) have  unique solutions? 

In the following sections we shall answer the above 
questions one by one. In Section 2.2 we present an 
example to show the difference that may occur, in 
terms of strangeness-index, between the higher-
order system (2.1) and a system of first-order 
Differential-Algebraic EquationsSs into which the 
original system is converted. In Section 2.3 we shall 
give a condensed form, under strong equivalence 
transformations, for matrix triples that are associated 
with systems of second-order Differential-Algebraic 
EquationsSs. Then, in Section 2.4, based on the 
condensed form, we partially read off the the 
properties of the corresponding system of second-
order Differential-Algebraic EquationsSs, and by 
differentiation-and-elimination steps reduce the 
system to a simpler but equivalent system. After an 
inductive procedure of this kind of reduction, we shall 
present a final equivalent strangeness-free system 
by which we can answer the questions posed in the 
above. Finally, in Section 2.5, the main results of 
second-order systems obtained in Section 2.4 are 
extended to general higher-order systems, and 
moreover, the connection between the solution 
behaviour of a system of Differential-Algebraic 
EquationsSs and regularity or singularity of the 
matrix polynomial associated with the system is 
presented. It is well known that one of the key 
aspects in which a system of Differential-Algebraic 
EquationsSs differs from a system of ODEs is that, 
to get the solutions of Differential-Algebraic 
EquationsSs, only continuity of the right-hand side f 
(t) may not be sufficient and therefore higher 
derivatives of f (t) may be required. Later, in Section 
2.4, we will clearly see the reason for this difference. 

Definition 2.2 Provided that the system (2.1) has 
solutions, the minimum number ^ of times that all or 
part of the right-hand side f (t) in the system (2.1) 
must be differentiated in order to determine any 
solution x(t) as a continuous function of t is the 
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 strangeness-index of the system (2.1) of Differential-

Algebraic EquationsSs. 

Obviously, according to Definition 2.2, both a system 
of ODEs and a system of purely algebraic equations 
have a zero strangeness-index. 

In the following, we present an example of an initial 
value problem for linear second- order Differential-
Algebraic EquationsSs to demonstrate the possible 
difference of strangeness index of the original system 
from that of the converted first-order system of 
Differential-Algebraic EquationsSs. 

Example 2.3 We investigate the initial value problem 
for the linear second-order constant coefficient 
Differential-Algebraic EquationsSs 

 

where 

 
is su_ciently smooth, together with the initial conditions 

 

where 

 A short computation shows that system (2.3) has the 
unique solution 

 

Moreover, (2.5) is the unique solution of the initial 
value problem (2.3)-(2.4) if the initial conditions (2.4) 
are consistent, namely, 

 

If we let 

 

then we have the following initial-value problem for the 
linear first-order Differential-Algebraic EquationsSs 

 

together with the initial condition 

 

It is immediate that the system (2.7) of first-order 
Differential-Algebraic Equations has the unique 
solution 

 

In this form, (2.9) is the unique solution of the initial 
value problem (2.7)-(2.8) if the initial condition (2.8) is 
consistent, i.e., 

 

Remark 2.4 Example 2.3 shows that the second-
order system (2.3) has a unique continuous solution 
(2.5) if and only if the right-hand side satisfies 

 

whereas the converted first-order system (2.7) has a 
unique continuous solution if and only 

if or in other words, the 
strangeness-index of the converted first-order system 
(2.7) is larger by one than that of the original second-
order system (2.3). For a general system of /-th-order 
Differential-Algebraic EquationsSs, it is not difficult to 
find similar examples. 

Differential-Algebraic EquationsSs into an associated 
system of first-order Differential-Algebraic 
EquationsSs is not always equivalent in the sense 
that higher degree of the smoothness of the right-
hand side f (t) may be involved in the solutions of the 
latter.  

It should be noted that Example 2.3 also shows that, 
to obtain continuous solutions of a system of 
Differential-Algebraic EquationsSs, some parts of the 
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right-hand side f (t) may be required to be more 
differentiable than other parts which may be only 
required to be continuous; for a detailed investigation, 
we refer to, for example, [2, 37, 38]. Nonetheless, in 
order to simplify algebraic forms of a system of 
Differential-Algebraic EquationsSs, we usually apply 
algebraic equivalence transformation to its matrix 
coefficients. For this reason and to avoid becoming too 
technical, we always consider the differentiability of the 
right-hand side vector-valued function f (t) as a whole, 
and do not distinguish the degrees of smoothness 
required of its components from each other. 
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