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In this paper, we study linear order differential-
algebraic equations with variable coefficients 

 

where  

possibly together 
with initial conditions 

 

As in the case of constant coefficients, we shall apply 
very similar techniques (transforming, differentiating, 
and inserting) to the system (3.1) with variable 
coefficients, and obtain parallel results on the system 
(3.1), and on the initial value problem (3.1)-(3.2). 

In the last section we saw that DAEs differ in many 
ways from ordinary differential equations. For instance 
the circuit in figure 1.3 lead to a DAE where a 
differentiation process is involved when solving the 
equations. This differentiation needs to be carried out 
numerically, which is an unstable operation. Thus 
there are some problems to be expected when solving 
these systems. In this section we try to measure the 
difficulties arising in the theoretical and numerical 
treatment of a given DAE. 

Modelling with differential-algebraic equations plays a 
vital role, among others, for constrained mechanical 
systems, electrical circuits and chemical reaction 
kinetics. 

In this section we will give examples of how DAEs are 
obtained in these fields. We will point out important 
characteristics of differential-algebraic equations that 
distinguish them from ordinary differential equations. 
More information about differential-algebraic equations 
can be found in [2, 15] but also in Consider the 
mathematical pendulum in figure 1.1. By construction 
the rows of Aa are linearly dependent. However, after 
deleting one row the remaining rows describe a set of 
linearly independent equations, The node 

corresponding to the deleted row will be denoted as 
the ground node. 

As seen in the previous sections a DAE can be 
assigned an index in several ways. In the case of 
linear equations with constant coefficients all index 
notions coincide with the Kronecker index. Apart from 
that, each index definition stresses different aspects 
of the DAE under consideration. While the 
differentiation index aims at finding possible 
reformulations in terms of ordinary differential 
equations, the tractability index is used to study DAEs 
without the use of derivative arrays. In this section we 
made use of the sequence (3.2) established in the 
context of the tractability index in order to perform a 
refined analysis of linear DAEs with properly stated 
leading terms. We were able to find explicit 
expressions of (3.12) for these equations with index 1 
and 2. Let m be the pendulum’s mass which is 
attached to a rod of length l [15]. In order to describe 
the pendulum in Cartesian coordinates we write down 
the potential energy U(x; y) = mgh = mgl ¡ mgy where 
¡ x(t); y(t) ¢ is the position of the moving mass at time 
t. The earth’s acceleration of gravity is given by g, the 
pendulum’s height is h. If we denote derivatives of x 
and y by x˙ and y˙ respectively, the kinetic energy 
Some additional simple examples: 

Consider the (linear implicit) DAE system: 

Ey' = A y + g(t) with consistent initial conditions and 
apply implicit Euler: 

E(yn+1 - yn)/h = A yn+1 + g(tn+1) 

and rearrangement gives: 

yn+1 = (E - A h)
-1

 [E yn + h g(tn+1)] 

Now the true solution, y(tn), satisfies: 

E[(y(tn+1) - y(tn))/h + h y''(x)/2] = A y(tn+1) + g(tn+1) 

and defining en = y(tn) - yn, we have: 

en+1 = (E - A h)
-1

 [E en - h
2
 y''(x)/2] 
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e0 = 0, known initial conditions 

where the columns of Aa correspond to the voltage, 
resistive and capacitive branches respectively. The 
rows represent the network’s nodes, so that ¡1 and 1 
indicate the nodes that are connected by each branch 
under consideration. Thus Aa assigns a polarity to 
each branch. 

This detailed analysis lead us to results about 
existence and uniqueness of solutions for DAEs with 
low index. We were able to figure out precisely what 
initial conditions are to be posed, namely D(t0)x(t0) = 
D(t0)x0 and D(t0)P1(t0)x(t0) = D(t0)P1(t0)x0 in the index 1 
and index 2 case respectively. 

These initial conditions guarantee that solutions u of 
the inherent regular ODE (3.5) and (3.10) lie in the 
corresponding invariant subspace. Let us stress that 
only those solutions of the regular inherent ODE that 
lie in the invariant subspace are relevant for the DAE. 
Even if this subspace varies with t we know the 
dynamical degree of freedom to be rankG0 and 
rankG0+rankG1¡m for index 1 and 2 respectively 
Analogous to Section 2.3, in Section 3.1 we 
concentrate on the treatment of linear second-order 
Differential-Algebraic Equations with variable 
coefficients. We shall prove that the quantities de-
veloped in Section 2.3 are still invariant under local 
equivalence transformations, and present a 
condensed form under a set of regular conditions. 
Later, in Section 3.2, based on the results of Section 
3.1, we describe the solution behavior (solvability, 
uniqueness of solutions and consistency of initial 
values) of the higher-order system (3.1) and of the 
initial value problem (3.1)-(3.2). 

It should be pointed out that the work in this chapter is 
carried out along the lines of the work with respect to 
linear first-order Differential-Algebraic Equations with 
variable coefficients in [28, 29, 34]; for a 
comprehensive exposition, we refer to [34], Chapter 3. 

Triples of Matrix-Valued Condensed Form 
Functions 

In this section, we shall mainly treat systems of linear 
second-order Differential-Algebraic Equations with 
variable coefficients 

 

where

possibly together with initial value conditions 

 

we consider the time varying coordinate 
transformations given by x(t) = Q(t)y(t) and premultipli- 
cation by P(t), 

where and

are pointwise nonsingular 
matrix-valued functions. These changes of coordinates 
transform (3.3) to an equivalent system of Differential-
Algebraic Equations 

 

Obviously, the 
relation

gives a one-to-one correspondence between the two 
corresponding solution sets of the system (3.3) and 
the system (3.5). If we use the notation of triples 

(M(t), C(t), K(t)) and  to 
represent the systems (3.3) and (3.5) respectively, 
then we can write the equivalent relation in terms of 
matrix multiplications: 

 

In the general case of order system (3.1), if we make 
use of the notation of an 

of matrix-
valued functions to represent the system (3.1), we 
have the following definition of equivalence of 
variable coefficient systems via time varying 
transformations. 

Definition 

3.1 a

nd  of matrix-valued 
functions 
with

are called (globally) equivalent if there arepointwise 
nonsingular matrix-valued functions 

and

such that 
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where denotes a binomial 

coefficient, If this is the case and the 
context is clear, we still 
write

 

As already suggested by the definition, the following 
proposition shows that relation (3.7) is an equivalence 
relation. 

Proposition 3.2 Relation (3.7) introduced in Definition 
3.1 is an equivalence relation on the set of (/ + 1)-
tuples of matrix-valued functions. 

Proof. We shall show relation (3.7) has the three 
properties required of an equivalence relation. 

1. Reflexivity: Let  and  
Then, we 

have

 

2. Symmetry: Assume 

that with 
pointwise nonsingular matrix-valued functions 
P(t) and Q(t) that satisfy (3.7). We shall prove 

that  

Note that, from the identity it 
follows that any order derivative of 

with respect to t is identically 
zero. Then, by this fact, it is immediate to 
verify that 

 

Hence, by (3.7) and (3.8), we have 

 

namely,

 

3.  Transitivity: Assume 

that  with 
point wise nonsingular matrix-valued functions 

 and that   

 with point wise nonsingular 

matrix-valued functions and which 
satisfy (3.7), respectively. We shall prove 

that  By 
the product rule and Leibniz’s rule (cf. [6], p. 203) for 
differentiation, we can immediately verify that 

 

Thus, by the assumptions and (3.9), we have 
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namely,

 

In order to introduce a set of regularity conditions 
under which we can get a condensed form via (global) 
equivalence transformations (3.6) for the triple (M(t), 
C(t), K(t)) in (3.3), we need the concept of (local) 
equivalence relation between two triples of matrices. 

Two triples (M, C, K) 

and of 
matrices are called (locally) equivalent if there exist 

matrices and  P, Q 
nonsingular, such that 

 

In general, we have the following definition of (local) 
equivalence relation between two tuples of matrices. 

Definition 3.3 Two (1+1)-

tuples and

 

 of matrices are called 
(locally) equivalent if there exist ma-

trices P, Q 
nonsingular, such that 

 

Again, we 

write if the 
context is clear. 

Proposition 3.4 Relation (3.11) introduced in Definition 
3.3 is an equivalence relation on the set of (/ + 1)-
tuples of matrices. 

Proof. The proof can be immediately carried out along 
the lines of the proof of Proposition 3.2.  

Recalling the condensed form and the invariants for 
matrix triples obtained under (strong) equivalence 
transformations in Section 2.3, we can introduce a set 
of invariants for matrix triples under local equivalence 
transformations, as the following lemma shows. 

Lemma 3.5 Under the same assumption and the same 
notation as in Lemma 2.9, the quantities defined in 
(2.30) are invariant under the local equivalence 
relation (3.10) and (M, C, K) is locally equivalent to the 
form (2.28). 

Proof. Since the strong equivalence relation (2.17) is 
the special case of the local equivalence relation 

(3.11) by setting by Lemma 
2.9, it is immediate that (M, C, K) is locally equivalent 
to the form (2.28). In view of the proof of Lemma 2.9, 
it remains to show that the quantities defined in 
(2.30) are invariant under the local equivalence 

relation (3.10). Here, again, we just take as 

an example. Indeed, let (M, C, K) and be 
locally equivalent, namely, identity (3.10) holds. Let 

the columns of form a basis for , and let 

the columns of form a basis 

for Then, from (3.10)it follows 

that the columns of form a basis 

for Since, for any  

 

if and only if 

 

it follows that the columns of form a 

basis for Thus, the invariance 

of  follows from 
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Similarly, the invariance of the other quantities in 
(2.30) can be proved.  

Now, from the matrix triple (M, C, K) passing to the 
triple (M(t),C(t),K(t)) of matrix-valued functions, we can 
calculate, based on Lemma 3.5, the characteristic 
quantities in (2.30) for (M(t),C(t),K(t)) at each fixed 

value Then, we obtain nonnegative-
integer valued functions 

 

For the triple (M(t),C(t),K(t)) of matrix-valued functions, 
in order to derive a condensed form which is similar in 
form to the condensed form (2.28) for the matrix triple 
(M, C, K), we introduce the following assumption of 
regularity conditions for the triple (M(t),C(t), K(t)) 

on  

 

By (2.30) and (3.12), it immediately follows 

that are also constant on  

We can see that the regularity conditions (3.12) imply 
that the sizes of the blocks in the condensed form 

(2.28) do not depend on Then, the 
assumption (3.12) allows for the application of the 
following property of a matrix-valued function with a 
constant rank, which may be regarded as a 
generalization of the property of a matrix shown in 
Lemma 2.6. 

Lemma 

3.6

and rank  for 

all Then there exist pointwise unitary (and 
therefore non-singular) matrix-valued 

functions and

 such that 

 

where is nonsingular for 

all  

Using Lemma 3.6 we can then obtain the following 
global condensed form for triples of matrix-valued 
functions via global equivalence transformations 
(3.6). For convenience of expression, in the following 
condensed form and its proof, we drop the subscripts 
of the blocks and omit the argument t unless they are 
needed for clarification. 

Lemma 3.7 

Let be 
sufficiently smooth, and sup pose that the regularity 
conditions (3.12) hold for the local characteristic 
values of (M(t), C(t), K(t)). Then, (M(t),C(t),K(t)) is 

globally equivalent to a triple of 
matrix-valued functions of the following condensed 
form 

 

All blocks except the identity matrices in (3.14) are 

again matrix-valued functions on  
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Note that in (3.14) whereas in (2.28) 
may be a nonzero matrix, which is the only difference 
in form between condensed forms (3.14) and (2.28). 
This difference is due to the equivalence relation (3.5) 

via time varying transformations.  is 
obtained by solving an initial value problem for 
ordinary differential equations; see the details of the 
proof at the end of page 48. 

Proof. The proof of Lemma 3.7 is given in Appendix 
(on page 48) to this chapter.  

The Solution performance of Higher-Order 
Systems of Differential-Algebraic Equations 

Here, the only difference of the case of variable 
coefficients from the constant case is that, in order to 
carry out the procedure to the final stage, we must 
assume that at every stage of the inductive procedure, 
the regularity conditions (3.12) hold. If this is the case, 
then it is immediate that we can obtain, finally, a 
theorem which is parallel to Theorem 2.12. From the 
final theorem we can directly read off the solution 
behavior of (3.3) and of (3.3)-(3.4), and obtain a 
consequence which is parallel to Corollary 2.13. 
Clearly, there is no difference in form between the final 
theorem and Theorem 2.12 if in the former case we 
omit the argument t in the variable coefficients, nor is 
there between the consequence and Corollary 2.13. 
Therefore, here, for the sake of space of writing we do 
not state them again. In addition, it should be pointed 
out that, at this writing, since we do not know whether 
two different but globally equivalent triples of matrix-
valued functions, after the differentiation-and-
elimination steps are applied to them respectively, will 
lead to new triples with same characteristic 
values

 and 
u, we can not guarantee that these values obtained in 
every step of the above inductive procedure are 
globally characteristic for the triple (M(t),C(t),K(t)). 
Analogously, in the general case of higher-order 
systems of Differential-Algebraic Equations with 
variable coefficients, we can obtain a final theorem 
which is similar in form to Theorem 2.19, and its 
consequence similar to Corollary 2.20, which can 
show the solution behavior of (3.1) and of (3.1)-(3.2). 
For the same reason, we omit them here. 

Appendix: Proof of Lemma 3.7. By the global 
equivalent relation (3.6) and Lemma 3.6, we obtain the 
following sequence of globally equivalent triples of 
matrix- valued functions. 
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