

REVIEW ARTICLE

SOME ANALYTICAL PRELIMINARIES: A STUDY

www.ignited.in

Journal of Advances in Science and Technology

Vol. III, No. VI, August-2012, ISSN 2230-9659

Some Analytical Preliminaries: A Study

Rajesh Kumar

Research Scholar of CMJ University Shillong- Meghalaya

JACOBI POLYNOMIALS

A preliminary information which partially can be found. First of all, we recall that the classical Jacobi polynomial is the k-th member of the sequence of polynomials which are orthogonal on [-1; 1] with respect to the Jacobi weight.

 $w_{\alpha\beta}(u) = (1-u)^{\alpha}(1+u)^{\beta}(\alpha,\beta > 1)$

or, equivalently, to the normalized Jacobi weight

 $M_{\alpha\beta}(u) = w_{\alpha\beta}(u) / r_{\alpha\beta} = \int w_{\alpha\beta}(u). du$

An explicit expression for Jacobi polynomials is

 $P_{k}^{(\alpha,\beta)}(u) = 1/2^{k}$ $\sum (\alpha + k) (\beta + k) (u - 1)^{k-v} (u + 1)^{v}$ $deg P_{k}^{(\alpha,\beta)} = k , P_{k}^{(\alpha,\beta)}(1) = (\alpha + k)$

 $P_{k}^{(\alpha,\beta)}(-u) = (-1) \cdot P_{k}^{(\alpha,\beta)}(u)$

In particular, the polynomials Pk $^{(\alpha, \alpha)}$ (u) are even for even k and odd for odd k. The latter polynomials are in essence the Gegenbauer polynomials. More precisely, the Gegenbauer (ultra spherical) polynomial is defined as

 $C_{k}^{v}(u) = r(v + \frac{1}{2}) r(2v + k) Pk^{(v - \frac{1}{2}, v-1/2)}(u) / r(2v) r(v + k + \frac{1}{2}),v>-\frac{1}{2}$

so that

deg $C_{k}^{v} = k, C_{k}^{v}(1) = (2v + k - 1/k)$

In addition,

 $C_{k}^{v}(-1) = (-1)^{k} (2v + k - 1/k)$

With a fixed v the Gegenbauer polynomials (Cv k (u)) k=0 are orthogonal on [-1; 1] with respect to the weight

 $W_{v-1/2, v-1/2}(u) = (1 - u^2)^{v-1/2}$

We especially need in the Gegenbauer polynomials with v = q-2/2; $q \in N$; $q \ge 1$: They are orthogonal with respect to the weight

$$w_q(u) = w_{q-3/2, q-3/2}(u) = (1 - u^2)^{q-3/2}$$

or, equivalently to,

$$\Omega_{q}(u) = w_{q}(u) / r_{q}$$

where,

$$r_{q} = \int_{-1} w_{q}(u) du = r(1/2) r(m-1/2) / r(m/2)$$

The Cristoffel-Darboux kernel which relates to the Jacobi polynomials is

$$\mathsf{K}_{t}^{(\alpha,\beta)}(\mathsf{u},\mathsf{v}) = \sum \mathsf{P}_{k}^{(\alpha,\beta)}(\mathsf{u}) \mathsf{P}_{k}^{(\alpha,\beta)}(\mathsf{v}) / || \mathsf{P}_{k}^{(\alpha,\beta)} ||_{\mathsf{w}\,\alpha,\beta}^{2}$$

According to the Cristoffel -Darboux Formula

$K_{t} \stackrel{(\alpha,\beta)}{=} (u,v) =$	1	$r(t+2) r(t+\alpha + \beta + 2)$
$2^{\alpha+\beta}$ (2t + α + β +	2)	$r(t+a+1)r(t+\beta+1)$
P $_{t+1}$ $^{(\alpha,\beta)}$ (u) P $_{t}$ $^{(\alpha,\beta)}$ (v) - P _t ^(α,β) (u)	$P_{t+1} \stackrel{(\alpha,\beta)}{=} (v)$
Х		
u – v		
An important parti	cular case is	
$K_t^{(\alpha,\beta)}(u) =$	1	$r(t + \alpha + \beta + 2)$. $P^{\alpha+1,\beta}(u)$
$2^{\alpha + \beta + 1}$	r(a	+1) r(t+ β + 1)
Whence,		
$K_t^{(\alpha,\beta)}(1) =$	1	$r(t + \alpha + \beta + 2)$. $P^{\alpha+1,\beta}(u)$
2 ^{α + β+1}	r(a +1) r(a +	2) r(t +1) r(t+ β + 1)

In fact, we need to calculate the quantity

$$\Delta^{(\alpha,\beta)} = 2^{\in} \Gamma_{\alpha,\beta} K^{(\alpha,\beta+\epsilon)} (1)$$

where $\in = \in t = \operatorname{res}(t) \pmod{2}$ and

By substitution, we obtain

The following specialization is the most important in the sequel.

THEOREM : Let $m \in N$; $m \ge 1$; and let

$$\Delta_k$$
 (m,t) = $\Delta_t^{\ (\alpha,\beta)}$, $\alpha = \partial m - \delta - 2/2$, $\beta = \delta - 2/2$

where, $\delta = [K : R]$. Then,

$$\Delta^{(m,t)}_{R} = (m + t - 1)$$

(m - 1)

and

Δc	(m,t) = (m + m)	[t/2] - 1)	(m + [t+1/2] -	-1)
(n	n – 1) (m-	- 1)	

and

$\Delta_{\mathrm{H}^{(\mathrm{m},\mathrm{t})}} = (2\mathrm{m})$	+ [t/2] - 2)	(m + [t+1/2] - 1)
(2m – 2) (2m -	-2)

Proof.

 $\Delta_{K^{(m,t)}}$ = $r(~\delta/2$) $r([t/2]+\delta m/2+ \in$) $r([t/2]+\delta m/2$ - $\delta/2+1)$

```
r(\delta m/2) r(\delta m/2 - \delta/2 + 1) r([t/2] + 1) r([t/2] + \delta/2 + \epsilon)
If K = R, i.e. \delta = 1, then
\Delta_{R}^{(m,t)} = r(1/2) r([t \in /2 + m/2] r([t \in /2] + m/2 + 1/2))
```

r(m/2) r(m/2 + 1/2) r([t - (2] + 1)) r([t + (2] + 1/2))

= $r(1/2) r([t \in /2 + m/2] r([t \in /2] + m/2 + 1/2)$ 1

 $r(t + \in /2 + 1/2) r(m/2) r([m/2] + 1/2)$ (t- ∈ /2) ! Because of the classical formula $\Gamma(u + k) = r(u) \prod (u + i)$, $k \in N$, we get, Δ_{R} (m,t) = \prod (m/2 + i) \prod (m + 1 /2 + i)

 $\prod (1/2 + i) (t - \in / 2)!$ $= \prod (m + i) \prod (m + 1 + i)$

 $(t + \in -1) !! (t - \in) !$ $= m(m + 1) \dots (m + t - 1 / m - 1)$.

For K = C or H, i.e. δ = 2 or 4, X = δ / 2 , formula becomes $\Delta_{K}(m, t) = (t + \in /2 + X^{m} - 1) ! (t - \in /2 + X^{m} - X) !$

 $(X^{m} - 1)! (X^{m} - X)! (t - \epsilon/2)! (t + \epsilon/2 + X - 1)!$

=
$$(X^m - X) ! (t - \in /2 + X^m - X) ! (t - \in /2 + X^m - 1) !$$

The product in the denominator is 1 for X = 1 and 2m -1 for X = 2.

INTEGRATION OF ZONAL FUNCTIONS

Here we derive some integration formulas we have used in the main text. We denote by σ` the Lebesgue measure (area) on the sphere $S^{q-1} = S(R^q)$ induced by the standard Lebesgue measure (volume) in R^q: The normalized measure on S^{q-1} will be denoted by σ , so that

 $\sigma = \sigma$ Area (S^{q-1})

From now on for any measure u, we use the short notation

∫f. du

meaning the integration over the support of u or a set Z C suppq.

THEOREM : Let f be a continuous function on [-1; 1]. Then for all $x \in S^{q-1}$

 \int f (<x , y>) d
ơ (y) = \int_{-1} f(u) Ω (u) du

Proof. Consider the decomposition $R^q = Span(x) \otimes L$; so that L, x and y = $\xi_1 x + z$; $z \in L$: Let σ be the area on the unit sphere $S(L) == S^{q-2}$ induced by σ . Then

```
d\sigma(y) = (1 - \xi_1^2) q^{-3/2} d\xi_1 d\sigma(z)
```

As a result,

 $\int f(\langle x, y \rangle) d\sigma(y) = \int_{-1}^{1} f(\xi_1) (1 - \xi_1^2)^{q-1/2} d\xi_1 = k \int_{-1}^{1} f(\xi_1) d\xi_1 = k$ $f(u) \Omega_m(u) du$

where k and k are some coefficients. Actually, k = 1since the measure σ and the weight Ω_m are both normalized.

Now we obtain a modification of regarding to the projective situation. The latter means that the integrand only depends on $|\langle x, y \rangle|$ or, equivalently, on $| \langle x, y \rangle |^2$: We start with a multi-dimensional counterpart.

LEMMA : Let 2 <= |<=, q-2: The measure σ is the product

 $d\sigma(y) = (1 - p^2)^{1/2 - 1} p^{q-l-1} dp d\sigma_{l-1}(z) d\sigma_{q-l-1}(w)$

where $y = [Ci]^{q} \in S^{q-1}$, $z = [Ci]^{l}$, $w = [Ci]^{q}_{l+1}$, q =||wk|| and e`i-1 is the measure (area) induced on the sphere $S^{i-1} C R^i$, 2 <= i <= q - 1:

Proof. There is the diffomorphism

 $y \to (p, z^{,}, w^{,}); 0$

its inverse diffeomorphism is

 $v = [\sqrt{1 - p^2} z^{1}]$ pw` 1 ſ

Denote by $v_1;$: : : ; $v_{l\text{-}1}$ and $\psi_1;$: : : ; ' $\psi_{l\text{-}1}$ the spherical coordinates on $S^{l\text{-}1}$ and $S^{q\text{-}l\text{-}1}$ respectively, so that $(\xi_1; \ldots; \xi_q) \to (p; v_1; \ldots; v_{l-1}; \psi_1; \ldots; \psi_{q-l-1})$. The corresponding Jacobi matrix is

$$\begin{bmatrix} -p/\sqrt{1} - p^{2} z^{2} & \sqrt{1} - p^{2} z^{2} & 0 \end{bmatrix}$$

$$\begin{bmatrix} w^{2} & 0 & pW \end{bmatrix}$$

where,

 $Z = [\partial \xi i' / \partial \partial k], 1 \le i \le i, 1 \le k \le |-1|$

and

 $W = [\partial \xi i' / \partial k], 1+1 \le i \le q, 1 \le k \le q - 1 - 1,$

The first column is orthogonal to the others since

 $\sum \xi i \partial \xi i$ / $\partial k = \frac{1}{2} \partial \xi i$ / $\partial v k (\sum \xi i^2) = 0$

and, similarly,

 $\sum \xi i \partial \xi i / \partial k = 0$

Since the Norm of the first column is

$$\sqrt{p^2} / 1 - p^2 + 1 = (1 - p^2)^{-1/2}$$
,

the corresponding Gram matrix is

$$G = \begin{bmatrix} (1-p^{2})^{-1} & 0 \\ 0 & \end{bmatrix}$$

$$\begin{bmatrix} 0 & (1-p^{2})Z^{T}Z \\ 0 & \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ p^{2}W^{T}W \end{bmatrix}$$

However, Z and W are the Jacobi matrices of the transformations (v1; :::; v_{I-1}) \rightarrow ((`1; :::; (`I) and (ψ 1; :::; ' ψ q- I - 1) \rightarrow ((`I+1; :::; (`q) respectively. Therefore,

 $\begin{array}{l} d\sigma`(y) = \sqrt{detG} \ dpv_1 \dots dv_{l-1}d'_1 \ : \ : \ d'_{q-l-1} \ = \ 1 \ - \ p^2)^{l/2 \ -1} \ p^{q-l-1} \\ ^1 dpde`_{l-1}(z`) de`_{q-l-1}(w`) \end{array}$

REMARK : Formula is also valid for I = 1. The measure σ `0 on the 0-dimensional unit sphere S⁰ = {-1; 1}C R is such that σ `₀(1) = σ `₀(-1) = 1.

Below we apply Lemma to I = ∂ ; q = ∂ m with ∂ = [K : R] and K = R; C or H. Then S^{q-1} = S(E_R) = S(E) where E is a m-dimensional (m >= 2) right linear Euclidean space over K and ER is the realification of E.

THEOREM : Let \emptyset be a continuous function on [0; 1]. Then for all $x \in S(E)$

$$\int \phi (|\langle x, y \rangle|^2) d\sigma (y) = \int_{-1} \phi (1+v/2) \Omega_{\alpha, \beta}(v) dv$$

where,

$$\alpha = \delta m - \delta - 2 / 2 ,$$

$$\beta = \delta - 2 / 2$$

Proof. Consider the coordinate system in $E = K^m$ with the first basis vector $x \in S(E)$. If

 $\begin{array}{l} y = [(`i]^{\delta m} \ _1 \ \text{then} \ <x; \ y> = (`_1 \in \ K^m \ R^{\delta} \ \text{so}, \ z = (`_1; \ w = [(`i]^m \ _2 \in \ K^{m-1} == R^{\delta m-1} \ \text{in notation of Lemma} \ . \ Applying this lemma for \ \delta = 2; \ 4 \ \text{and} \ Remark \ \ for \ \delta = 1 \ we obtain \end{array}$

$$\int \phi (|\langle x, y \rangle|^{2}) d\sigma (y) = \int_{-1} \phi (|(\hat{y}_{1})|^{2}) d_{\sigma}(y)$$

= $k \int d\sigma \hat{v}_{-1} \int d\sigma \hat{v}_{-\delta - 1} \int_{1} \phi (1 - p^{2}) (1 - p^{2}) \delta/2 - 1 p_{\delta m - \delta - 1} dp$
= $k_{1} \int_{1} \phi (1 - p^{2}) p^{2\alpha + 1} (1 - p^{2})^{\beta} dp$

where k and
$$k_1$$
 are some coefficients. By substitution $1-p^2 = 1/2(1 + v)$;

$$\int \varnothing \; (|{<}x \; , \; y{>}|^2) \; d\sigma \; (y) = k_2 \int_{-1} \varnothing \; (\; (1 \; + \; v \;)/2 \;) \; (1 \; - \; v)^\alpha \; (1{+}v)^\beta \; dv$$

= $k_3 \int_{-1} \phi ((1 + v)/2) \Omega_{\alpha, \beta}(v) dv$

with some coefficients k_2 and k_3 . In fact, we get $k_3 = 1$ taking $\emptyset = 1$ as before.

COROLLARY : For $t \in N$ the quantity

 $\mathfrak{v}_k \; (m,t)$ = ((| <x,y> $|^{\, 2t} \; d\sigma(y))^{-1}$, $x \in \; S(e)$

is independent of x , namely,

$$\mathcal{Y}_{R}(m,t) = (2t + m - 2) !!$$

$$\overline{(m - 2) !! (2t - 1) !!}$$

and

$$v_c (m,t) = (t + m - 1)$$

(m - 1)

and

$$\mathfrak{V}_{H}(m,t) = 1/(t+1)(t+2m-1)$$

(2 m -1)

Proof :

Journal of Advances in Science and Technology Vol. III, No. VI, August-2012, ISSN 2230-9659

 $\int (|\langle x, y \rangle|^{2t}) d\sigma (y) = \int_{-1} (1+v/2)^{t} \Omega_{\alpha,\beta}(y) dv$ = $1/2^{t} r_{\alpha\beta}$ $\Gamma_{\alpha\beta} + t$ $r(\beta + 1) r(t + \alpha + \beta + 2)$ = $r(\alpha + \beta + 2)r(t + \beta + 1)$ i.e; v_k (m,t) = $r(\delta/2) r(t + \delta m/2)$ r(δm/2) r(t + δ/2) If K = R, i.e. $\delta = 1$, then $y_{K}(m,t) = r'(1/2)r'(t + m/2)$ r(m/2) r(t + 1/2)(m + 2t - 2)!! = (m - 2)!! (2t - 1)!!If K = C or H, i.e. δ = 2 or 4, then $y_{\rm K}({\rm m,t}) = (t + \delta {\rm m}/2 - 1)!$ $(\delta m/2 - 1)!(t + \delta/2 - 1)!$ $(t + \delta m/2 - 1)$ t! $(\delta m/2 - 1)$ $(t + \delta/2 - 1)!$

The latter fraction is equal to 1 or 1 /*t*+1 if $\delta = 2$ or 4 respectively.

Note that

$$\mathfrak{V}_{K}(m,0) = 1$$

 $\mathfrak{V}_{K}(m,1) = m$

irrespective to k.

COROLLARY : For all $x \in E$ the Hilbert Identity

```
<x , x>t = \mathfrak{V}_K (m,t) \int | \langle x,y \rangle |^{2t} d\sigma (y)
```

REFERENCES

- [1] Artin E.: Geometric Algebra, Intersci. Pub., INC.
- [2] Bannai E.: Spherical t-designs and group representations, Amer. Math. Soc. Cont. Math.
- [3] Bannai E.: On extremal ⁻nite sets in the sphere and other metric spaces, London Math. Soc.,

- [4] Bannai E.: Hoggar S.G., Tight t-designs and square free integers.
- [5] Bajnok B.: Construction of spherical 4- and 5designs.
- [6] Bajnok B.: Construction of spherical t-designs, Geom.