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JACOBI POLYNOMIALS

A preliminary information which partially can be found .
First of all, we recall that the classical Jacobi
polynomial is the k-th member of the sequence of
polynomials which are orthogonal on [-1; 1] with
respect to the Jacobi weight.

Wep (1) = (1 —u) * (L +u)® (0,8 >-1)

or,equivalently, to the normalized Jacobi weight

N ap (U) = Wag (U) / T =] Weg (U). du

An explicit expression for Jacobi polynomials is

P P (u) = 112

S(a+k)(B+k)u-1) " u+1)"

deg P “P=k , PP (1)=(a +k)

P (u) = (1) . PP ()

In particular, the polynomials Pk (e a) (u) are even for
even k and odd for odd k. The latter polynomials are in
essence the Gegenbauer polynomials. More precisely,

the Gegenbauer (ultra spherical) polynomial is defined
as

Ch(u) = r(v+%)r(2v+k)Pk VYY) ) /v r
(V+k+%)v>-1%

so that

deg C' =k, C'x (1) =(2v+k—-1/k)
In addition ,

CY% (-1) = (-1)* (2v + k — 1 /k)

With a fixed v the Gegenbauer polynomials (Cv k (u))
k=0 are orthogonal on [-1; 1] with respect to the weight

2\Vv-1/2
W12, vz (U) = (1 = u%)"

We especially need in the Gegenbauer polynomials
with v =g-2/ 2 ; g€ N; g>= 1: They are orthogonal
with respect to the weight

Wa(U) = W g-3/2.,¢:3/2 (u) = ( 1 — u?)e3/2

or, equivalently to,

Qq (u) = wq (1) / 1q

where,

rq= .1 Wg(u) du =r(1/2) r(m-1 /2) / v(m/2)

The Cristoffel-Darboux kernel which relates to the
Jacobi polynomials is

K, (a,B) (U,V) - Z P, (a,B) (U) Py (a,B) (V) / ” P, (a,B) ”2w op

According to the Cristoffel -Darboux Formula
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Ki Bl fuv) = 1 rt+2) r(tra+ P+ 2)

204F Rt+a+B+2) rtta+1)o(t+ B+1)

Py @Bl (u) PolB) (v) - P Bl {u) P @8 (v)

An important particular case is

K: @l (u) = 1 ftta+f+2) . PrLE(y)
Qu+p+l fla+l)r(t+r B+1)

Whence,

K el (1) = 1 fftta+B+2) .Pld(y)
Qu+pel rfa+l)r{a+2)o(t+1) o(t+ B+1)

In fact, we need to calculate the quantity

AleBi = 2% 1, 5 K @8+%) (1)

where € = € t =res(t)(mod 2) and

Ta,p=].1Wa,p[u)du= 228+ rja+1)r(p +1)

rla+p+2

By substitution , we obtain

Aepl=r(B+1)o([t/2] +a+p+ € +2)r{t/2] +a+2)

rla+p+2)ra+2) oft/2f + (/2] +B+=+1)
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Amip=(m+t-1)

(m-1 )
and
Admd =(m+[t/2]~ 1) fm+[t+1/2]~ 1)
(m-1_ ) (m-1 )
and
3 = (2m+[1/2)-2)  (m* [t+1/2]- 1)
m-2 ) (2m-2 )
Proof.

Agimd = p(6/2) r(t/2] + 8m/2 + = ) r([t/2] + Sm/2 -86/2 + 1)

rBm/2 ) r(Bm/2 - 8/2 + 1) r{[t/2] + 1) 1([t/2] + 6/2 + €)
IfK=R,i.e. =1, then

Aptmt = 1/2) r([t+E /2 +m/2] r(t-= /2] + m/2 + 1/2)

rm/2 ) rm/2 + 1/2) r(t-€ /2] + 1) o[+ /2] + 1/2)

=r(1/2) r([t+= /2 +m/2] r([t-€ /2] +m/2 + 1/2) 1

ot += /2 + 1/2) rm/2) r(m /2] + 1/2) t-= /2!
Because of the classical formula
Fu+k) =ru ] (u+i, kN,

we get,

Ar (m,t) =[] (m/2 +i) [[(m+ 1 /2 +1i)

[1T(/2+10)(t-=/2)1
[Tm+1i)[]T(m+ 1 +i)

(t+s-1nN(t-=)1
=m(m+ 1) ......... m+t-1/m-1).
ForK=CorH,i.e.8§=2o0r4,X =58 /2, formula becomes

Ak(m, t) = (t+ E/2+Xm— 1)1 (t- /2 +Xm—X)!

The following specialization is the most important in
the sequel.

THEOREM : Letm € N; m>=1; and let
Acmt) =AP a=om-06-2/2,B=8-2/2

where, 8 =[K:R]. Then,
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(Xe- 1)l (Xm-X)!(t-€/2) | (t+ €/2+X-1)!

=(Xm-X)!(t-€/2+Xn-X) | (t- £/2+Xm-1)]

Xm- 1) (Xm-X) ! (- €/2) 1 (t+£/2+X-1)]
= 1

(Xm+[t/2] - X ) (Xm+ [t+1/2] - 1)

Xm-X+1).. Xm-1) (Xm-X ) (Xm - X )

The product in the denominator is 1 for X = 1 and 2m -
1for X =2.

INTEGRATION OF ZONAL FUNCTIONS

Here we derive some integration formulas we have
used in the main text. We denote by o the
Lebesgue measure (area) on the sphere S = S(RY)
induced by the standard Lebesgue measure (volume)
in R% The normalized measure on S** will be denoted
by o, so that

o =0"/Area (8™

From now on for any measure u, we use the short
notation

[f.du

meaning the integration over the support of u or a set
Z C suppq.

THEOREM : Let f be a continuous function on [-1; 1].
Then forallx € S%*

[f(<x, y») do(y) =]1 1w Q (v) du

Proof. Consider the decomposition RY = Span(x) © L;
sothatL,xandy=¢&x+z;,z € L:Leto bethe area
on the unit sphere S(L) == S*? induced by ¢". Then

do'(y)=(1- §?)a¥2d& do(g

As a result,

[f(x,y>)do(y)=[1f€) (1- &)™ d&=k |4
f(u) Qn, (u) du

Journal of Advances in Science and Technology

where k and k™ are some coefficients. Actually, k* = 1
since the measure o and the weight Q. are both
normalized.

Now we obtain a modification of regarding to the
projective situation. The latter means that the
integrand only depends on | <x,y> | or, equivalently, on
| <xy> |% We start with a multi-dimensional
counterpart .

LEMMA : Let 2 <= I<=- - 2: The measure ¢’
product

is the

do’(y) = (1 -p?/2-1prttdpdiom (z') do'qri(w)

wherey = [Ci]% € S%, z =[Cily, w = [Ci]%4, q =
|lwk]|| and e’i-1 is the measure (area) induced on the
sphere ST CR, 2<=i<=q- 1:

Proof. There is the diffomorphism

y—((,z,w);0<p<lz €Sthw e s

its inverse diffeomorphism is

y=[V1-p’2']

[ pw ]

Denote by vi; 1 ;i ; vipand @y @ ;'@ 1 the
spherical coordinates on S"™ and S*'* respectively,
sothat (§1;: 115 8d) — (P5 Vi oo s Vi W15 1115 Woa)
. The corresponding Jacobi matrix is

[-pN1-p°z 1-p°Z 0 ]

[ w 0 pwo ]

where,

Z=[0¢"/dk],1<=i<=1,1<=k<=1-1,

and

W=[3a¢& /ok],1+1<=i<=q,1<=k<=q-1-1,
The first column is orthogonal to the others since
S EOCi /ok="160& vk (X&) =0

and, similarly ,

Y¢&irogi/ok=0

Since the Norm of the first column is
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Vp?l1pP+1=(1-p)"2, where k and k; are some coefficients. By substitution
1-p*= 1/ 2(1 + v);

the corresponding Gram matrix is
[o(x,y>)do(y) =k Jao ((L+Vv)2)@-v°

G=[ (1-p9" 0 (1+v)P dv
0 ]
= ksl18((1+V)2)Qq p(v)dv
[ o (1-p)Z'Z
0 ] with some coefficients k, and ks. In fact, we get ks = 1
taking @ = 1 as before.
[ 0 0
PPW'W ] COROLLARY : For t € N the quantity
However, Z and W are the Jacobi matrices of the
transformations (v1;:::;v.1) — (C1; :::; () and (w1; ve (my) =( | <xy> |2 do(y)! ,x € S(e)
Drry'wa- - 1) > (CHL; :or 5 (q) respectively.
Therefore,

40" (y)=\detG dpv,...dvid’ :© - dopy = 1 - p2)|,2 1 pq.|_ is independent of x , namely,

"dpde’y1(2))de q1a( W)

vp(m,t) = (2t+m-2)1
REMARK : Formula is also valid for | = 1. The

measure 6'0 on the 0-dimensional unit sphere S° = {- (m-2)0@2t-1n

1; 1}JC Ris such that 07o(1) = 07¢(-1) = 1.

Below we apply Lemma to | = d; q = dm with d = [K : and

R] and K = R; C or H. Then S%' = S(Eg) = S(E) where

E is a m-dimensional (m >= 2) right linear Euclidean ve (m,t) =(t+m-1)
space over K and ER is the realification of E.

THEOREM : Let g be a continuous function on [O; 1]. ( m-1 )

Then forallx € S(E)

and

[o(l<x,y>|9do(y)=l10(1+v/2) Qa, p(v) dv
vp(m,t) =1/ (t+l) (t+2m-1 )

( 2m-1 )

where,

Proof :
a=0m-6-2/2,

B=6-2/2

Proof. Consider the coordinate system in E = K™ with
the first basis vector x € S(E). If

y=[CiP" 1 then<x;y>=(, € K" R®s0,z=(;w=
[Ci]", € K™ == R°™ in notation of Lemma . Applying
this lemma for & = 2; 4 and Remark for & = 1 we

obtain
Je (I<x, y>") do (y) =[18 (1 (1) doly) =
©
=k[do's1]d0" om.51 |18 (1-p°) (1-p")5/2 -1 Pom-oa 2
dp =X
=k 1 2 (1-p%) p*" (1-p)° dp g
2
4
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[(l<x,y>[?) do (y) = [1 (1+v/2)t Qa p(v) dv
= 1/ Qtru[i

ru[5+1;
= r(p+1)r(t+ta+p+2)

rla+p+2)r(t+ p+1)
i.e;

Y (mt) =  1(6/2)r(t+ 6m/2)

r( 6m/2)r(t+ &/2)
IfK=R,i.e. =1, then
vk (m,t) = r(1/2)r(t+ m/2)

r( m/2)r(t+ 1/2)
=  (m+2t-2)N

(m-2)1 (2t- 1!
IfK=CorH,i.e. §=2or4,then
v (m,t) = (t+ dm/2 - 1)!

(6m/2-1)!(t+ 8/2-1)!
= t! (t+6m/2-1)

(t+ 6/2-1)1 (dm/2-1)

The latter fraction is equalto 1 or 1 /t+1if § =2 o0r 4
respectively.

Note that

n
—

vk (m,0)

vg (m,1)

I
B

irrespective to k.

COROLLARY : For all x € E the Hilbert Identity

<x, x>t=vg (m,t) | | <x,y> |2t do (y)
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