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Abstract – Stem cell-based therapy has been tested for several diseases, including neurodegenerative 
disorders, such as Parkinson’s disease, spinal cord injury, and multiple sclerosis in animal models. The 
replacement of lost neurons that are not physiologically replaced is pivotal for therapeutic success. In 
the eye, degeneration of neural cells in the retina are hallmarks of such wide-spread ocular diseases as 
AMD and RP. In these cases the primary cause of blindness is due to loss of photoreceptors. This can 
result from dysfunction in either the PRC or the underlying RPE that supports their survival. 

 Transplantation of RSC with the potential to generate new retinal cells provides an alternative approach 
to enable the replacement of lost PRC or RPE. Retinal stem cells may restore vision in patients who have 
degenerative retinal diseases by two possible means: 1) repopulation of the damaged retina (e.g., PRC); 
and/or 2) rescue of retinal neurons from further degeneration.

80
 Different research groups have 

successfully isolated murine putative RSC from the ciliary margin (CM) and human RSC in the pars plana 
and pars plicata.

81,82
 However, the transplantation of these cells in normal and degenerative rodent retina 

was only minimally successful due to the limited ability of the cells to invade and integrate into the host 
retina.

27
 On the other hand, transplantation of immature post-mitotic rod precursors from developing 

retina (postnatal day 1) improves retinal integration.
83

 The optimal result occurs when selected cells were 
biochemically committed but not yet morphologically differentiated. The capability of subretinally or 
intravitreously injected RSC to invade and integrate into the neural retina remains restricted to sites of 
retinal injury. Breakdown of physical barriers, such as the outer limiting membrane, and/or release of 
unknown neurotrophic factors, are most likely required to stimulate RSC integration.

84
 To date only 

sparse data are available regarding factors that might stimulate migration, integration, and differentiation 
of RSC into the neural retina.  

Keywords: Retinal Degeneration, Neuro Degenerative Disorders, Regenerative Stem Cells (RSCs), Bone 
Marrow Stem Cells (BMS), Retinal Pigment Epithelium (RPE), Transforming Growth Factor (TGF), 
Fibroblast Growth Factor (FGF). 

---------------------------♦----------------------------- 
 

INTRODUCTION 

It is assumed that neurotrophic factors, such as 
transforming growth factor (TGF-beta 3),

85
 fibroblast 

growth factor (FGF),
86

 or epidermal growth factor 
(EGF),

87,88
 might play a role. Recent evidence has 

suggested that hepatocyte growth factor/scatter factor 
(HGF/SF), a pleiotrophic factor with mitogenic, and 
morphogenic activities, may also be involved in the 
development and maintenance of neurons and PRC. 

The replacement of diseased RPE in AMD would be 
pivotal to protect or rescue the adjacent PRC. 
Unfortunately, no convincing animal model for AMD 
exists to date. Therefore, the sodium iodate (NaIO3) 
model of RPE damage, established by G.E. Korte in 
1984,

90
 has been used to study at least the 

repopulation of bare areas of normal Bruch’s 
membrane.

91
 Briefly, the selective and patchy 

degeneration of the RPE monolayer after i.v. NaIO3 
injection is directly correlated to decreased visual 
function, decreased electrophysiological function and 
anatomical cell loss in the RPE . 

 The extent of the RPE damage is time and 
concentration-dependent. Interestingly, NaIO3-
damaged RPE cells express higher amounts of 
cytokine/growth factors involved in SC homing. After 
treatment with NaIO3, murine RPE cells express 
higher levels of SDF-1, as well as other signaling 
factors (complement factor C3 and HGF/SF). SDF-1 
is a chemokine whose receptor CXCR4 is expressed 
on bone marrow-derived progenitor cells and stem 
cells.

93
 While there was no evident change in 

vascular endothelial growth factor and Rantes, there 
was increased expression of the cytokine leukocyte 
inhibitory factor, known to promote self-renewal in 
ESC.

94
 Furthermore, supernatants of NaIO3–
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damaged RPE exert a priming effect on BMSC 
migration in vitro as they enhanced their transwell 
migration.

94
 These results provide evidence that 

damage to the RPE leads to production of soluble 
factors that can cause specific chemotaxis of BMSC 
and raise the possibility of their recruitment to the site 
of damage. These data support the possibility of using 
BMSC to replace damaged cells, especially RPE, in 
eyes with retinal degenerations. To investigate this 
further, we have undertaken endogenous as well as 
exogenous approaches using BMSC using the above 
described NaIO3 model. Endogenous refers to existing 
bone marrow cells in the host while exogenous refers 
to adoptively transferred cells. 

 Sodium iodate model of retinal pligment epithelium 
(RPE) degeneration A-F, Autofluorescence in flat-
mount whole-eye preparations of control (D) and 
sodium iodate-treated mice (A-C,E, and F). The top 
row (A-C) compared different doses of sodium iodate 
at 7 days postinjection (P1): 35 mg/kg (A), 50 
mg/kg(B), and 70 mg/kg (C) of body weight, E, B, and 
F compare different times PI at the same dose (50 
mg/kg) : 3 days PI (E): 7 days PI (B)L and 21 days PI 
(F).  Beinning on 3 days PI, a patchy loss of RPE can 
be detected by the decrease in autofluorescence 
(black areas).  The total area bare of RPE 
(autofluorescent areas) is dose dependent and 
increased over time (original magnification x 1000). 

REVIEW OF LITERATURE  

The use of stem cells to replace degenerated RPE 
cells has not yet demonstrated the ability to rescue 
photoreceptors cells at risk of damage. If stem cell 
differentiation and reconstitution of the damaged RPE 
monolayer occurs after photoreceptor degeneration, a 
rescue effect will not be possible. Alternatively, if the 
mobilization of endogenous stem cells occurs 
continuously or over a prolonged period of time, 
photoreceptor damage and/or rescue may be 
possible.

96
 

The regenerative capability of BMSC in the ocular 
system is not only restricted to RPE replacement. 
Chiou et al.  showed that BMSC have multilineage 
differentiation potential in vitro and differentiate into 
retinal cells and photoreceptor lineages after co-
culture with RPE cells.

97
 Other groups have followed 

different approaches to replace diseased RPE cells. 
Haruta and colleagues harvested RPE-like ESC in 
vitro and achieved functional improvement after 
subretinal transplantation into RCS rats.

98
 

Only a small percentage of total bone marrow cells are 
chemoattracted to supernatants from damaged RPE in 
vitro, as well as into damaged RPE in vivo, the 
properties of this subset of BM-derived cells need to 
be considered. Recent data indicate that the CD45

+
 

population of stem cells is committed to hematopoietic 
lineages, while the CD45

−
 population is believed to 

remain pluripotent and thus capable of differentiation 
into various non-hematopoietic tissues. 

 Kucia et al. showed that CD45
−
 BMSC are comprised 

of subsets of cells already committed to skeletal 
muscle, heart muscle, liver and neural tissues.

55
 These 

so called TCSC, more recently re-named very small 
embryonic-like cells (VSEL)

100
 express Oct-4, a stem 

cell marker, in addition to markers of tissue-specific 
progenitors. These TCSC are mobilized into PB during 
organ injury.

101
 SDF-1-based chemotactic isolation 

combined with RT-PCR analysis of mRNA revealed 
that early TCSC: 1) reside in the normal human and 
murine BM; 2) express CXCR4 on their surface; and 3) 
can be highly enriched in humans and mice after 
chemotaxis to an SDF-1 gradient. These studies were 
performed on freshly isolated cells, ruling out the 
potential contribution of culture-related 
transdifferentiated HSC or mesenchymal cells. In our 
experiments we found that Sca-1

+
 CD45

−
 BMSC are 

highly enriched in mRNA for retinal/RPE progenitors 
(Six-3, OTX, Pax-6, MITF; data not shown) and 
furthermore, that this is the subset of BMSC that has 
migrated in response to supernatants from damaged 
RPE in transwell assays. Thus, it appears that RPE-
committed VSEL cells (approximately 0.05% of the 
population) are present within the Sca-1

+
 CD45

−
 

subset of BMSC. This is supported by data from in 
vitro experiments using a co-culture of BMSC and 
RPE cells to trigger SC differentiation into the RPE-
lineage . 

MATERIAL AND METHOD 

Two types of approaches can be used to promote 
stem-cell-mediated regenerative repair of RPE: 
endogenous and exogenous. Endogenously, RPE 
injury combined with pharmacologically enhanced 
growth factor-mediated mobilization lead to migration 
of BM-derived cells into the subretinal space. BMSC 
(c-kit

+
), macrophages (F4/80) and leukocytes such 

as granulocytes, monocytes (CD11b) could be 
identified. Thereby, the number of c-kit

+
 BMSC in the 

eye after NaIO3 injection and mobilization increased 
dramatically compared to the mobilized control mice 
who did not have RPE damage.

91
 The migrated 

BMSC had incorporated in a monolayer along the 
RPE four weeks after transplantation and expressed 
the RPE markers RPE-65 and MITF (Figure 2). 
These findings suggest that bone marrow-derived 
stem cells are attracted to damaged RPE and are 
induced to differentiate into components of RPE. 
Mobilization enhances the outcome. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192438/#R94
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192438/#R96
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192438/#R97
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192438/#R98
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192438/#R55
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192438/#R100
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192438/#R101
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192438/#R91
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Figure 2 R??EPE-65 and MITF 

EXPRESSION OF RPE MARKERS RPE-65 AND 
MITF 

The results above demonstrated that a physiological 
process is in place in vivo to recruit stem cells to the 
damaged RPE and that endogenous BM-derived cells 
are able to integrate into the damaged RPE and 
express markers of RPE differentiation. Nevertheless, 
the significant experimental damage to the RPE could 
not be repaired by this endogenous approach, nor 
does this endogenous program appear capable of 
repairing or preventing the progressive damage to the 
RPE that occurs in AMD and retinitis pigmentosa. 
Thus, it appears that such recruitment of endogenous 
cells may not be sufficient to physiologically repair 
significant damage to the RPE in the same fashion 
that recruitment of endogenous SC cannot repair 
major damage to spinal cord or heart. 

To optimize number and availability of circulating 
BMSC, we then examined an exogenous approach for 
regeneration of damaged RPE. Additionally, this 
allows us to define the precise cell types involved 
using cell sorting as opposed to the mixture of stem 
cells and other BM-derived cells mobilized into the 
periphery with the endogenous approach. We injected 
FACS-sorted BMSC with the phenotype lin

−
 (negative 

for all lineages of differentiated BM cells), stem cell 
antigen 1 (Sca-1)-positive intravenously (i.v.) into 
NaIO3 treated animals. BMSC could be detected in the 
subretinal space on Bruch's membrane in areas of 
RPE loss on day four after cell injection, whereas 
controls without NaIO3 injection showed no BMSC. 
The double staining for Sca-1 and green fluorescence 
protein (GFP) confirms the BM origin of the cells 
systemically transferred and confirms that HSC home 
to the area of damaged RPE after NaIO3 injection. One 
and two weeks after transfer, BMSC could be 

identified in the subretinal space but they did not 
express RPE markers. Immunocytochemical staining 
showed the expression of RPE-65 in BMSC four and 
six weeks after transplantation. These results suggest 
that, as with the endogenous cells, BMSC injected 
systemically into the host home to the site of damage 
where they integrate and express markers of RPE 
differentiation in a time-dependent fashion.

95
. 

 

Figure 3 Immunocytochemical staining of vertical 
sections of a GFP chimeric 

MOUSE EYE FOUR WEEKS AFTER NAIO3 
TREATMENT AND BMC MOBILIZATION 

A third route for BMSC delivery is by direct subretinal 
injection. It is observed that subretinally injected 
BMSC integrated into the RPE and expressed 
markers of differentiation (e.g., RPE65). The optimal 
route for SC delivery remains to be determined. 
Concentrating the cells might provide a kinetic 
advantage for incorporation of the cells into the 
altered tissue. Thereby, the cells would not have to 
home to sites of damage from the circulation. 

BMSC changed their morphology from round to 
epithelial–like and expressed the epithelial markers 
cytokeratin, MITF - expressed on common 
progenitors of retina and RPE and persisting 
expression following RPE differentiation (its 
expression diminishes in cells that progress along a 
retina lineage), and the RPE-specific marker RPE-65 
after two weeks. The process required direct cell-cell 
contact between BMSC and RPE. No staining for 
RPE markers was detected when a membrane 
separated the two populations of cells. This was a 
specific effect, as no positive staining was detected 
when RPE cells were replaced with fibroblasts.

91
 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192438/figure/F2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192438/#R95
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192438/figure/F3/
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Figure 4Co-culture with RPE cells for two weeks 
leads to the expression of 

RPE-specific markers on sorted Sca-1
+
 BMSC 

 

Figure 5Cross section of a mouse eye six weeks 
after NaIO3 injection and i.v. transplantation of 

EGFP
+
 BMSC 

CONCLUSIONS 

It is important to note that degenerations in the 
mammalian retina, initiated by defects in 
photoreceptors or RPE, often leave the neural retina 
deafferented. It responds to this challenge by 
remodelling, first by subtle changes in neuronal 
structure and later by large-scale reorganization and 
represents the invocation of mechanisms resembling 
developmental and CNS plasticity. This neuronal 
remodelling and the formation of a glial seal may 
abrogate many cellular and bionic rescue strategies. 
On the other hand, survivor neurons appear to be 
stable, healthy, active cells and given the evidence of 
their reactivity to deafferentation, it may be possible to 
influence their emergent rewiring and migration 
habits.

102
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