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We review here the elements of intersection theory for 
two dimensional schemes. In mathematics, 
intersection theory is a branch of algebraic geometry, 
where subvarieties are intersected on an algebraic 
variety, and of algebraic topology, where intersections 
are computed within the cohomology ring. The theory 
for varieties is older, with roots in Bézout's theorem on 
curves and elimination theory. On the other hand the 
topological theory more quickly reached a definitive 
form.For a connected oriented manifold M of 
dimension 2n the intersection form is defined on the 
nth cohomology group (what is usually called the 
'middle dimension') by the evaluation of the cup 
product on the fundamental class 

 

 

 

This is a symmetric form for n even, in which case the 
signature of M is defined to be the signature of the 
form, and an alternating form for n odd. It is possible to 
drop the orient ability condition and work 
with\mathbb{Z}_2 coefficients instead. 

These forms are important topological invariants. For 
example, a theorem of Michael Freedman states that 
simply connected compact 4-manifolds are (almost) 
determined by their intersection forms up to 
homeomorphism. 

By Poincaré duality, it turns out that there is a way to 
think of this geometrically. If possible, choose 
representative n-dimensional submanifolds A, B for the 
Poincaré duals of a and b. Then λM(a, b) is the 
oriented intersection number of A and B, which is well-
defined because of the dimensions of A and B. Let 0 
be a Dedekind domain, K its field of fractions and C a 
scheme over O. We will call C a curve over 0 if C is an 
integral two dimensional scheme which is proper and 
flat over 0 and K is algebraically closed in the field of 
fractions of C. We say that C is regular if all its local 
rings are regular. It is a theorem of Lichtenbaum that C 
is the projective over 0, see [Li].  

A well-working machinery of intersecting algebraic 
cycles V and W requires more than taking just the 
set-theoretic intersection of the cycles in question. 
Certainly, the intersection V ∩ W or, more commonly 
called intersection product, denoted V · W, should 
consist of the set-theoretic intersection of the two 
subvarieties. However it occurs that cycles are in bad 
position, e.g. two parallel lines in the plane, or a plane 
containing a line (intersecting in 3-space). In both 
cases the intersection should be a point, because, 
again, if one cycle is moved, this would be the 
intersection. The intersection of two cycles V and W 
is called proper if the codimension of the (set-
theoretic) intersection V ∩ W is the sum of the 
codimensions of V and W, respectively, i.e. the 
"expected" value. 

Therefore the concept of moving cycles using 
appropriate equivalence relations on algebraic cycles 
is used. The equivalence must be broad enough that 
given any two cycles V and W, there are equivalent 
cycles V' and W' such that the intersection V' ∩ W' is 
proper. Of course, on the other hand, for a second 
equivalent V" and W", V' ∩ W' needs to be equivalent 
to V" ∩ W". 

For the purposes of intersection theory, rational 
equivalence is the most important one. Briefly, two r-
dimensional cycles on a variety X are rationally 
equivalent if there is a rational function f on a (k+1)-
dimensional subvariety Y, i.e. an element of the 
function field k(Y) or equivalently a function f : Y → 
P1, such that V - W = f-1(0) - f-1(∞), where f-1(-) is 
counted with multiplicities. Rational equivalence 
accomplishes the needs sketched above. 

Let C be a regular curve over 0 and let D and E be 
two Weil divisors of C. We say that D and E meet 
properly if the intersection of their support is a finite 
number of closed points of C. We say that a divisor is 
prime if it corresponds to an integral subscheme. 
Suppose that D and E meet properly and are both 

prime divisors. Let  be contained in both of 
their supports. Let 
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Where Ox is the local ring of C at x, k(x) is the residue 
field, f (resp. g) is the local equation of E (resp. E) at x. 
We extend this definition by linearity  to any two 
divisors D and E which meet properly. We'll call (D,E)x 
the local pairing of D and E at x. 

For the rest of this section let O be a discrete valuation 
ring with maximal ideal p, and let C be a regular curve 
over 0. We review here the work of Lichtenbaum [LiJ 
and Shafarevich [Sh] concerning an intersection 
pairing on C. We say that a Weil divisor of C lies over 
p if its support lies over p. Let D and E be Weil divisors 
of C which meet properly and suppose that either D or 
E lies over p. Let 

 

Here the summation runs over closed points x that are 
in the supports of both D and E. We'll call ( , ) the L-S 
pairing. It is clearly additive whenever it's defined. 

Let D be a Weil divisor of C which lies over p. Let f be 
a non-zero rational function on C whose associated 
divisor (f) meets D properly. Prop Is (D,(f)) = 0. 

Proof:  

Consequently we may extend the definition of (D/E) to 
arbitrary divisors D and E of C such that at least one 
of them lies over p. §2 We review here Arakalov's 
theory of intersections, [Ar]. 

 

In this section K will be a number field, 0 its ring of 
integers, and C a regular curve over 0. Let n = [K:Q], 

and let be the set of embeddings of K into 
C.  

Let Ci denote the Riemann surface associated to 

Let be a positive (1,1) form on Ci with  

 

Let V be an n dimensional real vector space with basis 

v1,…,vn. Let Div
v 
C be the group Div the group 

of Arakelov divisors of C. Let f be a non zero rational 
function on C, and let 

 

where denotes the absolute value of the function 
on Ci Here (f) refers to the principal Weil divisor of C 
associated coming from f. Let v(f) be the vector in V 
whose i

th 
coordinate (with respect to the basis {Vi} is vi 

(f). Let 

 

Here (f) refers to the principal weil divisor of C 
associated to f. We call (f)A the Arakelov divisor 
associated to f, we say that (f)Ais a principal Arakelov 
divisor. Let Pic

V
C be the quotient of Div

V
C by principal 

Arakelov divisors. We call Pic
V
C the group of Arakelov 

divisor classes. 

Let be a Weil divisor of Ci. We call a 
function G on Ci the Green's function for Di if: 

a)  G is a smooth non negative function on Ci 
away from the support of Di. 

b)  

here z = x + iy is a local parameter for C^, 

c) In a neighborhood of a point P we have: 

 

 

where z is a local parameter, and u(z) is a non 
vanishing smooth function. 

d)  

Prop 2 (Arakelov) Given a divisor D on Ci, a Green's 
function for D exists and is unique. 

Let be a divisor of Ci, let G be the 

Green's function of D and let be 
another divisor of Ci whose support has no points in 
common Proposition 3 (Arakelov): Wo have with the 
support of Di. Let 

 

 

Let D and E be Weil divisors of C which meet 

properly. Let be an embedding   The 
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 divisor D (resp. E)  of C determines a divisor Di 

(resp. Ei) of  

. Let . Let 

 

where the first summation runs over closed points x of 
C which are contained in the supports of both D and E, 
and the second summation runs over 

embeddings  We extend the definition of ( 
, ) further by letting  

 

 

Here D is a Weil divisor of C which induces a divisor of 

degree d on andare elements of 

V.  Proposition 4 (Arakelov): Let D 
be a Weil divisor of C and let f be a non zero rational 
function such that (f) and D meet properly. We have 
[D, (f)A ]  = o. 

We obtain a symmetric bi-additive real valued pairing [ 
, ] on Pic

V
C. 

 

Let p be a maximal ideal of 0 and let 0 be the 
localization of 0 at p. Let D and E be Weil divisors of C 

and assume that D lies over p. Then  is a 
regular curve over OP and the divisors D and E induce 

divisors on  which we'll also call D and E. We 
have  

 

In this section we study the behaviour of the pairings ( 
, )x with respect to blow-ups and base change. We 
define the notion of the pullback of a divisor, prove a 
few facts about it, and use them to obtain several 
formulas we'll need later on. Unless otherwise 
indicated, a blow-up of a scheme has as its center a 
closed point. In abstract algebra, a Dedekind domain 
or Dedekind ring, named after Richard Dedekind, is an 
integral domain in which every nonzero proper ideal 
factors into a product of prime ideals. It can be shown 
that such a factorization is then necessarily unique up 

to the order of the factors. There are at least three 
other characterizations of Dedekind domains which 
are sometimes taken as the definition: see below. 

Note that a field is a commutative ring in which there 
are no nontrivial proper ideals, so that any field is a 
Dedekind domain, however in a rather vacuous way. 
Some authors add the requirement that a Dedekind 
domain not be a field. Many more authors state 
theorems for Dedekind domains with the implicit 
proviso that they may require trivial modifications for 
the case of fields. 

An immediate consequence of the definition is that 
every principal ideal domain (PID) is a Dedekind 
domain. In fact a Dedekind domain is a unique 
factorization domain (UFD) iff it is a PID. 

Throughout this section 0 will be a Dedekind domain 
such that: for all maximal ideals p of 0, k(p) -the 
residue field, is finite. Let K be the field of fractions of 
0. Let K' be a finite extension of K, and 0' the integral 
closure of 0 in K'. Let C be a regular curve over 0. 

Proposition 5 : is a curve over 0'. 

Proof   :  All we must check is 

that is integral. 

Since C is regular, is regular, hence smooth. 

Therefore is smooth. Since K is algebraically 

closed in K(C), is connected. Therefore 

 is integral. Since  is flat over 
0', it must be irreducible. Since C is projective over 

0,  is projective over 0*. Let , 

defined by some ideal I. If is not reduced, 

then - the n
fc
^ symbolic power of some 

prime ideal J. Tensoring with K' we see that 

 is not reduced, a contradiction. 

Therefore  is integral. 

Let C1 be the normalization of , so C1 is a 
curve over 0'. Let C' be a regular curve over 0' which 
is obtained from C1 by a finite sequence of blow ups 
and normalizations. By the work of Abhyankar, see 
[Ab] or [Lip], such schemes exist. Let 

 

 

be the projection maps. Let D be a Weil divisor of C. 

We define a divisor of C' as follows: Let {G} be 
the set of prime divisors of C* whose support maps 
into the support of D. Let XG be the generic point of G 
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and let fG be the local equation of D at . Then fG 

induces an element  in the local ring of C' at 
XG, which is a discrete valuation ring. Let nG be the 

order of  with respect to this valuation. Let 

 

Clearly this definition also applies to any map  
of schemes, as long as we restrict ourselves to locally 
principal divisors of Y and X is normal,  integral and of 
finite type over Y.  

Let D be a prime divisor of C and let 

where each divisor Di of C' is 
prime and dominates D, and the support of F lies over 
a finite set of closed points of C. Let K(D) (resp. K(Di)) 
be the field of rational functions on D (resp. Di).  

It is clear that K (Di) is a finite extension of K(D).  

Proposition 6 :

  

Proof   :    

Let each G a prime divisor of C1. 

Since is finite, each G must dominate D. 
Let x be the generic point of D and let Ox be the local 
ring of C at x, OX is a discrete valuation ring. 

Let R be the integral closure of OX in K (C1), the field of 
rational functions on C1. Then R is a semi- local 
Dedekind domain with maximal ideals { mG } 
corresponding Furthermore K(G) = R/mG and K(D) = 
Ox/m. We therefore have: 

to the divisors {G} above. Let m be the maximal ideal 
of Ox, then 

 

 

by standard results of commutative algebra, see [Bo]. 
To lift this result from C1 to C' notice that 

 is an isomorphism when restricted to an 

open set U of C1, and  is codimension two in C1. 

Therefore each divisor Di of C' is birational via  to 
some divisor G of C1, furthermore ni = nG. 

Let D be a prime divisor of C and let 

 as above. Let  

(respectively  ) be the normalization. By 

composition we obtain a map  which 
must factor through D, obtaining a commutative 
diagram. 

 

The map must be finite and flat. 

Let  be a closed point, and let {y} be the set 

of points of  which map to x. 

Let (resp. ) be the local ring of D at x 

(resp. of at y). Let a be an element of then 

a induces an element of which we also 
denote by a. 

Proposition 7 : We have: 

 

Proof : Let R be the integral closure 

of in Then R is semi-local with maximal 
ideals { my } corresponding to the points { y }. 

Since  is finite and flat R is a free module 

of rank . Therefore 

 

 

Let D be a prime divisor of C, and the 
normalization. Let x be a closed point of D and { y } 

the set of points of which map to x. 

Let be the local ring of D at 

x (resp. the local ring of at y). Let and 



 

 

Shweta 

 

w
w

w
.i

gn
it

e
d

.i
n

 

5 

 

 Journal of Advances in Science and Technology                     
Vol. III, No. VI, August-2012, ISSN 2230-9659 

 
 

denote by a the corresponding elements of  
Proposition 8: 

 

Proof: We first note that the residue field of x is finite, 
since D is either finite over 0 or a curve over a finite 
field. Similarly the residue field of every closed point 

of is finite. Let R be the integral closure of OD,X in 
K(D). Then R is a semi-local Dedekind domain with 
maximal ideals { my } corresponding to the points (y). 

There is some such that  
Therefore 

 

which is finite, since every R/my is finite. Let M1 be the 

kernel of the map and let M2 be the 
cokernel. We have a diagram: 

 

with all squares commutative and all horizontal and 
vertical sequences exact. By the snake lemma we 
obtain an exact sequence: 

 

Therefore  We obtain 

 

Let E be a prime divisor of C which meets D properly. 
Let x be a closed point of C which is contained in the 
supports of both D and E. Let {w} be the finite set of 
closed points of C' such that: (i) each w lies over x, (ii) 
each w lies in the support of some Di ; (ii) each w lies 

in the support of   Proposition 9: We have 

 

Proof : We have 

 

where f (resp. g) is the local equation for D (resp. E)  

in Therefore 

 

by proposition 8. Applying proposition 7, we obtain, 
for each i: 

 

Combining this with proposition 6, we obtain our 
result. 

In this section we apply the results of the previous 
section to Arakelov's pairing [ , ] 

Let 0 be the ring of integers of a number field K. Let 
K’ be a finite extension of  K, O’ the integers of  K’. 
Let C be a regular curve over O, and C’ a regular 

curve over O’ which is obtained from by a 
finite sequence of normalizations and blow ups. 

Let be the  set of embeddings and 

let be a (1,1) form on Ci, as in section 2. For 
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each let be ■ the set of embeddings of K’ 

into C which induce  

Let be the Riemann surface associated 

to  We have Employing this 

isomorphism and the form we obtain a 

form with 

 

Let V’ be the real vector space with basis and 

let  We define a map 

by 

 

This map clearly induces a 

map  Proposition 10: 

For we have 

 

 

Proof : One immediately reduces to the case that D 
and E are Weil divisors and meet properly. 

Let  with each Dk dominating D 

via and F lying over a finite set of closed points of 
C. It is easily seen that 

 

Proposition 9 : shows that 

 

Therefore 

 

It remains to show that 

 

Since C is projective we may, b^ the Chinese 
Remainder theorem, find a rational function f on C 
such that 

 

Therefore 

 

In this section we apply the results of section 3 to the 
Lichtenbaum-Shefarevitch pairing ( , ). 

Let 0 be a discrete valuation ring with a finite residue 
field. Let p be the maximal ideal of O, K the fraction 
field. Let C be a regular curve over 0. Let K’ be a 
finite unramified extension of K, O’ the integral 
closure of 0 in K’, q the maximal ideal ofj O’. Since O’ 

is etale over is a regular curve over O’. 

Let C’ be a regular curve over O’ obtained by a finite 

sequence of blow-ups of . Let  
be the projection. Let D and E be Weil divisors of C, 
one of which lies over p. 

Proposition 11  :  

Proof   : We may assume that D 
and E are prime divisors which meet properly and D 
lies over p. Then 

 

where the summation runs over points x common to 
both D and E. Let 

 

as in section 3. By Proposition 9 we have: 

 

where the first summation runs over points x in C 
common to both D and E; and for a given x, the 
second summation runs over points y of C' which 
map to x. Therefore 
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We obtain 

 

It remains to show that . The proof of 
this is as in the proof of Proposition 10. 

Let R be the strict henselization of 0, so R is a 
complete discrete valuation ring over ), with residue 

field equal to the algebraic closure of  k(p) 
Furthermore R is unramified over 0, meaning P

R
 is 

prime in R. Let  be the projection. Let 
D and E be Weil divisors of C, one of which lies over p. 

Corollary :  

Proof: Follows easily from Proposition 11. 
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