

REVIEW ARTICLE

Study of Political Representations: Diplomatic
Missions of Early Indian to Britain

Journal of
Advances and

Scholarly

Researches in
Allied Education

Vol. 3, Issue 6,
April-2012,

ISSN 2230-7540

Journal of Advances in
Science and Technology

Vol. IV, No. VII, November-
2012, ISSN 2230-9659

INTRODUCTION TO GENE EXPRESSION
PROGRAMMING

www.ignited.in

Swati Agrawal1 Dr.P.C.Gupta2

w
w

w
.i

gn
it

e
d

.i
n

1

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

Introduction to Gene Expression Programming

Swati Agrawal1 Dr. P. C. Gupta2

1
Research Scholar, Jaipur National University, Rajasthan

2
Head of Computer Sci. Dept.,Jaipur National University (Raj.)

Abstract - Gene Expression Programming is a procedure that mimics biological evolution to create a

computer program to model some phenomenon. Gene expression programming can be used to create

many different types of models including decision trees, neural networks and polynomial constructs. The

type of gene expression programming implemented in DTREG is Symbolic Regression – so named

because it creates a symbolic mathematical or logical function.

---------------------------♦-----------------------------

INTRODUCTION

DTREG provides a full implementation of the Gene
Expression Programming algorithm developed by
Cândida Ferreira. Here are some of the features of
DTREG’s implementation:

 Continuous and categorical target variables

 Automatic handling of categorical predictor
variables

 A large library of functions that you can select
for inclusion in the model

 Mathematical and logical (AND, OR, NOT,
etc.) function generation

 Choice of many fitness functions

 Both static linking functions and evolving
homeotic genes

 Fixed and random constants

 Nonlinear regression to optimize constants

 Parsimony pressure to optimize the size of
functions

 Automatic algebraic simplification of the
combined function

 Several forms of validation including cross-
validation and hold-out

 Computation of the relative importance of
predictor variables

 Automatic generation of C or C++ source
code for the functions

 Multi-CPU execution for multiple target
categories and cross-validation

SYMBOLIC REGRESSION

In ordinary mathematical regression, the procedure is
given the form of the function to be fitted to the data.
This could be a linear function for linear regression or
a general mathematical function for nonlinear
regression. The regression procedure computes the
optimal values of parameters for the function to make
the function fit a data set as well as possible, but the
regression procedure does not alter the form of the
function. For example, a linear regression problem
with two variables has the form:

y = a+b*x

Where x is the independent variable, y is the
dependent variable, and a and b are parameters
whose values are to be computed by the regression
algorithm. This type of procedure is classified as
parametric regression, because the goal is to
estimate parameters for a function whose form is
known (or assumed).

With nonparametric regression the form of the
function is not known in advance, and it is the goal of
the procedure to find a function that will fit the data.
So we are looking for f(·) that will best fit

y=f(x1,x2,…,xn)

Where y is the dependent variable and there are n
independent x variables.

http://www.amazon.com/Gene-Expression-Programming-Mathematical-Computational/dp/3540327967/ref=sr_1_1?ie=UTF8&s=books&qid=1195493324&sr=8-1

Swati Agrawal1 Dr.P.C.Gupta2

w
w

w
.i

g
n

it
e

d
.i
n

2

 Introduction to Gene Expression Programming

There are many possible forms of nonparametric
functions – neural networks and decision trees are
types of nonparametric functions. Symbolic regression
is a subset of nonparametric regression that restricts
the functions to be mathematical or logical
expressions.

Symbolic Regression Example – Kepler’s Third
Law

Around 1605, the German mathematician and
astronomer Johannes Kepler discovered three
astronomical laws that describe the orbits of planets
around the Sun. Kepler’s work was based on the
precise astronomical observations recorded by Danish
astronomer Tycho Brahe. Kepler’s third law states
“The squares of the orbital periods of planets are
directly proportional to the cubes of the semi-major
axis of the orbits.” Mathematically, this is:

Period
2
 = constant*Distance

3

Let’s see if symbolic regression can figure this out
without the help of a genius astronomer. We will use
the following data as input to the procedure:

Gene expression programming was used to model this
data. Two genes were used per chromosome, and
there were 7 symbols in the head section of each
gene. After four generations, DTREG found a perfect
fit to the data. The expression generated and
displayed by DTREG is:

Period = sqrt(Distance)*Distance

Simplifying this we find:

Period = sqrt(Distance)*Distance
Period = Distance

(3/2)

Period
2
 = Distance

3

This is exactly Kepler’s third law.

ODD PARITY EXAMPLE

In this example, symbolic regression will be used to
find a logical expression to compute the parity for a 3-
input binary circuit. The output parity value should be 1
if there are an odd number of inputs with the value 1,
and the output should be 0 if there are an even
number of inputs with the value 1. Here is the data for
the analysis:

Planet Distance Period

Venus 0.72 0.61

Earth 1.00 1.00

Mars 1.52 1.84

Jupiter 5.20 11.90

Saturn 9.53 29.40

Uranus 19.10 83.50

In1 In2 In3 Parity

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

For this problem we will allow DTREG to use only
three functions in the expression: AND, OR, NOT.
We will use 3 genes per chromosome, and we will
use the AND function to link the genes. After 418
generations to train the model and an additional 397
generations to simplify it, DTREG generated the
following function which perfectly fits the data:

Parity =
(In3|(!(In1&In2)))&((!(In1|In2))|(In1&In2)|!In3)&In2|(In
1|In3)

Where ‘|’ is the OR operator, ‘&’ is AND, and ‘!’ is
NOT.

GENETIC ALGORITHMS

Genetic algorithms (GA) have been in widespread
use since the 1980’s, but the first experiments with
computer simulated evolution go back to 1954.

Genetic algorithms are basically a smart search
procedure. The goal is to find a solution in a multi-
dimensional space where there is no known exact
algorithm. Genetic algorithms are often thousands or

Swati Agrawal1 Dr.P.C.Gupta2

w
w

w
.i

gn
it

e
d

.i
n

3

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

even millions of times faster than exhaustive search
procedures. Exhaustive search is impractical for high
dimension problems. The use of random mutations
allows genetic algorithms to avoid being trapped in
locally-optimal regions which is a serious problem for
hill-climbing algorithms typically used for
iterative/convergence procedures. Genetic algorithms
have been used to solve otherwise intractable
problems such as the Traveling Salesperson Problem.

Genetic algorithms mimic biological evolution, and the
terms used for genetic algorithms are based on
biological features.

In biological DNA systems, the basic units are the
adenine (A), thymine (T), guanine (G) and cytosine (C)
nucleotides that join the helical strands. In genetic
algorithms, the basic unit is called a symbol. The
nature of symbols depends on the particular genetic
algorithm. In gene expression programming, the
symbols consist of functions, variables and constants.
Symbols for variables and constants are called
terminals, because they have no arguments.

An ordered set of symbols form a gene, and an
ordered set of genes form a chromosome. In GEP
programs, genes typically have 4 to 20 symbols, and
chromosomes are typically built from 2 to 10 genes;
chromosomes may consist of only a single gene. The
DNA strand for a mammal typically contains about
5x10

9
 nucleotides.

GENETIC ALGORITHMS FOR SYMBOLIC
REGRESSION

Many efforts have been made to use genetic
algorithms to solve symbolic regression problems –
that is, to generate symbolic functions to model data.
One of the problems that plagues most of the efforts is
finding a way to efficiently mutate and cross-breed
symbolic expressions so that the resulting expressions
have a valid mathematical syntax. For example, if you
mutate (2*x+3) into (x 2+3*) it isn’t any good, because
it isn’t syntactically correct.

One approach to this problem is to perform a mutation,
check the result and then try a different random
mutation until a syntactically valid expression is
generated. Obviously, this can be a time consuming
process for complex expressions.

A second approach is to limit what type of mutations
can be performed – for example, only exchanging
complete sub-expressions. The problem with this
approach is that if limited mutations are used, the
evolution process is hindered, and it may take a large
number of generations to find a solution, or it may be
completely unable to find the optimal solution.

GENE EXPRESSION PROGRAMMING

An elegant and efficient solution to the expression-
mutation problem was discovered in 1999 by Cândida
Ferreira (Ferreira 1996). Ferreira devised a system for
encoding expressions that allows fast application of a
wide variety of mutation and cross-breeding
techniques while guaranteeing that the resulting
expression will always be syntactically valid. This
approach is called Gene Expression Programming
(GEP). Experiments have shown that GEP is 100 to
60,000 times faster than older genetic algorithms.

EXPRESSION TREES AND KARVA

The key to GEP’s ability to quickly mutate valid
expressions is the way it encodes symbols in genes.
This notation is called the Karva Language.
Expressions encoded using Karva are called K-
expressions. Consider the simple mathematical
expression:

 a*b+c

This can be encoded as an expression tree of the
form

An expression tree is an excellent way to represent
an expression in a computer, because the tree can
be arbitrarily complex, and expression trees can be
evaluated quickly.

To convert an expression tree to the Karva notation,
start at the left-most symbol in the top line of the tree
and scan symbols left-to-right and top-to-bottom.
Each time a symbol is encountered, add it to the K-
expression in left-to-right order. When there are no
more symbols on a line, advance to the left end of the
following line. Using this method, the tree shown
above is converted to the K-expression:

 +*cab

Note that + is the first symbol found on the first line,
at the end of that line scanning begins on the second
line and finds * followed by c. It then starts with the
third line and finds a and b.

Swati Agrawal1 Dr.P.C.Gupta2

w
w

w
.i

g
n

it
e

d
.i
n

4

 Introduction to Gene Expression Programming

As a second example, consider the expression
a*b+sqrt(c*d) The corresponding expression tree is

Where ‘Q’ represents square root. This can be
translated to the K-expression

+*Qab*cd

The process of converting an expression tree to a K-
expression can be carried out quickly by a computer. A
reverse process can quickly convert a K-expression
back to an expression tree.

GENES

A gene consists of a fixed number of symbols encoded
in the Karva language. A gene has two sections, the
head and the tail. The head is used to encode
functions for the expression. The tail is a reservoir of
extra terminal symbols that can be used if there aren’t
enough terminals in the head to provide arguments for
the functions. Thus, the head can contain functions,
variables and constants, but the tail can contain only
variables and constants (i.e. terminals). The number of
symbols in the head of a gene is specified as a
parameter for the analysis. The number of symbols in
the tail is determined by the equation

t = h*(MaxArg-1)+1

Where t is the number of symbols in the tail, h is the
number of symbols in the head, and MaxArg is the
maximum number of arguments required by any
function that is allowed to be used in the expression.
For example, if the head length is 6 and the allowable
set of functions consists of binary operators (+, -, *, /),
then the tail length is:

t = 6*(2-1)+1 = 7

The purpose of the tail is to provide a reservoir of
terminal symbols (variables and constants) that can be
used as arguments for functions in the head if there
aren’t enough terminals in the head.

Consider a gene with three symbols in the head and
which uses binary arithmetic operators. The tail will
then have 3*(2-1)+1=4 terminal symbols. Here is an
example of such a gene. The head is in front of the
comma, and the tail follows the comma:

+-/,abcd

Ignoring the distinction between the head and the tail,
this K-expression can be converted to this expression
tree:

Note that the head of the gene consisted only of
functions, but the tail provided enough terminals to fill
in the arguments for the functions.

During mutation, symbols in the head can be
replaced by either function or terminal symbols.
Symbols in the tail can be replaced only by
terminals. Using the same example K-expression
shown above, assume mutation replaces the ‘/’
symbol with d. Then the K-expression is:

+-d,abcd

And the expression tree becomes

Note that this expression tree has fewer nodes than
the previous one. This illustrates an important point:
by allowing mutation to replace functions with
terminals and terminals with functions, the size of the
expression can change was well as its content. As a
further example, assume the next mutation changes
the first symbol in the K-expression from ‘+’ to c. The
K-expression becomes:

c-d,abcd

The expression tree for this is:

The “tree” consists of a single node which is the
variable c. Note that the number of symbols in the

Swati Agrawal1 Dr.P.C.Gupta2

w
w

w
.i

gn
it

e
d

.i
n

5

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

gene did not change, but some symbols are not used.
The symbols that are not used are called the
noncoding region of the gene. Because the functional
length of a gene may be less than the number of
symbols it holds, it is called an open reading frame
(ORF). Biological genes also have noncoding regions.

If you experiment with K-expressions you will find that
any possible mutation will result in a valid expression
as long as the following rules are adhered to:

1. Symbols in the head can be replaced with
functions, variables and constants.

2. Symbols in the tail can be replaced only with
variables and constants (terminals).

3. The tail is of sufficient length to provide
terminals for all possible functions that can
occur in the head. (See the formula for tail
length above.)

This is the key to the efficiency of gene expression
programming. It is easy for a computer program to
follow these three rules while performing mutations,
and it never has to check whether the resulting
expression has valid syntax. By allowing a broad
range of mutations, the process can efficiently explore
a high dimensional space, and the expressions can
change in size as functions are replaced by terminals
and terminals by functions.

CHROMOSOMES AND LINKING FUNCTIONS

A chromosome consists of one or more genes. The
number of genes in a chromosome is a parameter for
the analysis. If there is more than one gene in a
chromosome, then a linking function is used to join the
genes in the final function. The linking function can be
static or evolving.

For example, consider a chromosome with two genes
having the K-expressions:

Gene 1: *ab
Gene 2: /cd

If ‘+’ is used as the static linking function, then the
combined expression is:

Which is equivalent to (a*b+c/d).

MUTATION, INVERSION, TRANSPOSITION
AND RECOMBINATION

In order for a population to improve from generation to
generation innovations must occur that cause some
individuals to have qualities never before seen. These
innovations come about from mutation. In gene
expression programming there are several types of
mutation, some are simple random changes in the
symbols of genes, others are more complex involving
reversing the order of symbols or transposing symbols
or genes within the chromosome.

Mutation is not necessarily beneficial; often the
change results in a less fit individual or in an unviable
individual who cannot survive. But there is a
possibility that a mutation may produce an individual
with extraordinary qualities – a “genius” individual.
The operation of evolution depends on mutations
producing some individuals with greater fitness.
Through natural selection, their offspring improve the
overall quality of the population. As described above,
elitism guarantees that a genius never dies unless a
better genius is found to take its place. If elitism
applied to people, Isaac Newton might have lived
until Albert Einstein was born, and Einstein might still
be alive today.

Several types of mutation are used by gene
expression programming:

 Mutation – Simple mutation just replaces
symbols in genes with replacement symbols.
Symbols in the heads of genes can be
replaced by functions or terminals (variables
and constants). Symbols in the tail sections
can be replaced only by terminals.

 Inversion – Inversion reverses the order of
symbols in a section of a gene.

 Transposition – Transposition selects a
group of symbols and moves the symbols to
a different position within the same gene.
Gene transposition moves entire genes
around in the chromosome.

 Recombination – During recombination, two
chromosomes are randomly selected, and
genetic material is exchanged between them
to produce two new chromosomes. It is
analogous to the process that occurs when
two individuals are bred, and the offspring
share a mixture of genetic material from both
parents.

Swati Agrawal1 Dr.P.C.Gupta2

w
w

w
.i

g
n

it
e

d
.i
n

6

 Introduction to Gene Expression Programming

PARSIMONY PRESSURE AND EXPRESSION
SIMPLIFICATION

If two expressions do an equally good job of fitting a
data set, the simpler expression is usually preferred.
For symbolic regression, complexity is measured by
the number of symbols and functions in the
expression. Gene expression programming has two
techniques for selecting simpler expressions over
more complex ones.

The first approach is to adjust the fitness scores of
individuals so that fitness is reduced by an amount
proportional to the complexity of the expression. This
penalty for complexity is called parsimony pressure.
DTREG allows you to specify how much parsimony
pressure is applied.

While parsimony pressure is effective at guiding
evolution toward simpler expressions, experiments
have shown that parsimony pressure may hinder the
process of evolving toward greater fitness. It is not
uncommon for more complex expressions to do a
better job of fitting than less complex ones, so pushing
evolution to favor simpler expressions may increase
the number of generations required to find a solution,
or it may make it impossible to find a good solution. If
parsimony pressure is used, you also should build a
model with it turned off, and verify that the simpler
solution does not lose significant accuracy.

The second approach to finding parsimonious
solutions is to divide the task into two phases: (1)
primary training without parsimony pressure, and (2)
secondary training which uses parsimony pressure.
Since the primary training is done without parsimony
pressure, evolution can focus on finding the most
accurate model as quickly as possible. Once primary
training is finished, a second round of training begins
using the final population from primary training as the
starting population for the secondary training.

During secondary training, parsimony pressure is used
to try to find a simpler expression that is at least as
good as the best one found during primary training.
While secondary training is being performed, the
primary goal is still to improve accuracy, and the
secondary goal is to find simpler expressions. So a
simpler expression will be selected only if its accuracy
meets or exceeds the best accuracy previously found.
If a more accurate expression is found, it is used even
if the result is an increase in complexity. So it is
possible that during the secondary training complexity
could actually increase in order to improve accuracy.
But experiments have shown that this rarely happens,
and secondary training usually results in simpler
expressions. Since there is never any risk of losing
accuracy with this approach, and it may result in a
simpler and possibly more accurate expression, it is
recommended.

REFERENCES

1. Aloni R, Aloni E, Langhans M, Ullrich CI. Role
of cytokinin and auxin in shaping root
architecture: regulating vascular
differentiation, lateral root initiation, root
apical dominance and root gravitropism.
Annals of Botany (2006) 97:883–893.

2. Bent AF, Hoffman TK, Schmidt JS, Hartman
GL, Hoffman DD, Xue P, Tucker ML. Disease-
and performance-related traits of ethylene-
insensitive soybean. Crop Sciences (2006)
46:893–901.

3. Broekaert WF, Delaure SL, De Bolle MF,
Cammue BP. The role of ethylene in host–
pathogen interactions. Annual Review of
Phytopathology (2006) 44:393–416.

4. Byrd DW, Kirkpatrick T, Barker KR. An
improved technique for clearing and staining
plant tissue for detection of nematodes.
Journal of Nematology (1983) 15:142–143.

5. Chiang DY, Brown PO, Eisen MB.
Visualizing associations between genome
sequences and gene expression data using
genome-mean expression profiles.
Bioinformatics (2001) 17(Suppl. 1):S49–S55.

6. Clark DG, Gubrium EK, Barrett JE, Nell TA,
Klee HJ. Root formation in ethylene-
insensitive plants. Plant Physiology (1999)
121:53–60.

7. Davis EL, Hussey RS, Baum TJ. Getting to
the roots of parasitism by nematodes.
Trends in Parasitology (2004) 20:134–141.

8. de Almeida Engler J, De Vleesschauwer V,
Burssens S, Celenza JL Jr, Inzé D, Van
Montagu M, Engler G, Gheysen G.
Molecular markers and cell cycle inhibitors
show the importance of cell cycle
progression in nematode-induced galls and
syncytia. The Plant Cell (1999) 11:793–808.

9. de Almeida Engler J, Van Poucke K, Karimi
M, De Groodt R, Gheysen G, Engler G.
Dynamic cytoskeleton rearrangements in
giant cells and syncytia of nematode-
infected roots. The Plant Journal (2004)
38:12–26.

10. DeYoung BJ, Innes RW. Plant NBS-LRR
proteins in pathogen sensing and host
defense. Nature Immunology (2006) 7:1243–
1249.

11. Dixon RA, Paiva NL. Stress-induced
phenylpropanoid metabolism. The Plant Cell
(1995) 7:1085–1097.

Swati Agrawal1 Dr.P.C.Gupta2

w
w

w
.i

gn
it

e
d

.i
n

7

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

12. Doyle EA, Lambert KN. Meloidogyne javanica
chorismate mutase 1 alters plant cell
development. Molecular Plant–Microbe
Interactions (2003) 16:123–131.[CrossRef]

13. Drew MC, He CJ, Morgan PW. Programmed
cell death and aerenchyma formation in roots.
Trends in Plant Science (2000) 5:123–127.

14. Gao B, Allen R, Maier T, Davis EL, Baum TJ,
Hussey RS. The parasitome of the
phytonematode Heterodera glycines.
Molecular Plant–Microbe Interactions (2003)
16:720–726

15. Glazer I, Apelbaum A, Orion D. Effect of
inhibitors and stimulators of ethylene
production on gall development in
Meloidogyne javanica-infected tomato roots.
Journal of Nematology (1985) 17:145–149.

16. Glazer I, Epstein E, Orion D, Apelbaum A.
Interactions between auxin and ethylene in
root-knot nematode (Meloidogyne javanica)
infected tomato roots. Physiological and
Molecular Plant Pathology (1986) 28:171–
179.

http://jxb.oxfordjournals.org/cgi/external_ref?access_num=10.1094%2FMPMI.2003.16.2.123&link_type=DOI

