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Abstract - Gene Expression Programming is a procedure that mimics biological evolution to create a 

computer program to model some phenomenon. Gene expression programming can be used to create 

many different types of models including decision trees, neural networks and polynomial constructs. The 

type of gene expression programming implemented in DTREG is Symbolic Regression – so named 

because it creates a symbolic mathematical or logical function. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

DTREG provides a full implementation of the Gene 
Expression Programming algorithm developed by 
Cândida Ferreira. Here are some of the features of 
DTREG’s implementation:  

 Continuous and categorical target variables  

 Automatic handling of categorical predictor 
variables  

 A large library of functions that you can select 
for inclusion in the model  

 Mathematical and logical (AND, OR, NOT, 
etc.) function generation  

 Choice of many fitness functions  

 Both static linking functions and evolving 
homeotic genes  

 Fixed and random constants  

 Nonlinear regression to optimize constants  

 Parsimony pressure to optimize the size of 
functions  

 Automatic algebraic simplification of the 
combined function  

 Several forms of validation including cross-
validation and hold-out  

 Computation of the relative importance of 
predictor variables  

 Automatic generation of C or C++ source 
code for the functions  

 Multi-CPU execution for multiple target 
categories and cross-validation  

SYMBOLIC REGRESSION 

In ordinary mathematical regression, the procedure is 
given the form of the function to be fitted to the data. 
This could be a linear function for linear regression or 
a general mathematical function for nonlinear 
regression. The regression procedure computes the 
optimal values of parameters for the function to make 
the function fit a data set as well as possible, but the 
regression procedure does not alter the form of the 
function. For example, a linear regression problem 
with two variables has the form:  

y = a+b*x  

Where x is the independent variable, y is the 
dependent variable, and a and b are parameters 
whose values are to be computed by the regression 
algorithm. This type of procedure is classified as 
parametric regression, because the goal is to 
estimate parameters for a function whose form is 
known (or assumed).  

With nonparametric regression the form of the 
function is not known in advance, and it is the goal of 
the procedure to find a function that will fit the data. 
So we are looking for f(·) that will best fit  

y=f(x1,x2,…,xn)  

Where y is the dependent variable and there are n 
independent x variables.  

http://www.amazon.com/Gene-Expression-Programming-Mathematical-Computational/dp/3540327967/ref=sr_1_1?ie=UTF8&s=books&qid=1195493324&sr=8-1
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There are many possible forms of nonparametric 
functions – neural networks and decision trees are 
types of nonparametric functions. Symbolic regression 
is a subset of nonparametric regression that restricts 
the functions to be mathematical or logical 
expressions.  

Symbolic Regression Example – Kepler’s Third 
Law 

Around 1605, the German mathematician and 
astronomer Johannes Kepler discovered three 
astronomical laws that describe the orbits of planets 
around the Sun. Kepler’s work was based on the 
precise astronomical observations recorded by Danish 
astronomer Tycho Brahe. Kepler’s third law states 
“The squares of the orbital periods of planets are 
directly proportional to the cubes of the semi-major 
axis of the orbits.” Mathematically, this is:  

Period
2
 = constant*Distance

3
  

Let’s see if symbolic regression can figure this out 
without the help of a genius astronomer. We will use 
the following data as input to the procedure: 

Gene expression programming was used to model this 
data. Two genes were used per chromosome, and 
there were 7 symbols in the head section of each 
gene. After four generations, DTREG found a perfect 
fit to the data. The expression generated and 
displayed by DTREG is:  

Period = sqrt(Distance)*Distance  

Simplifying this we find:  

Period = sqrt(Distance)*Distance  
Period = Distance

(3/2)
  

Period
2
 = Distance

3
  

This is exactly Kepler’s third law.  

ODD PARITY EXAMPLE 

In this example, symbolic regression will be used to 
find a logical expression to compute the parity for a 3-
input binary circuit. The output parity value should be 1 
if there are an odd number of inputs with the value 1, 
and the output should be 0 if there are an even 
number of inputs with the value 1. Here is the data for 
the analysis: 

Planet Distance Period 

Venus 0.72 0.61 

Earth 1.00 1.00 

Mars 1.52 1.84 

Jupiter 5.20 11.90 

Saturn 9.53 29.40 

Uranus 19.10 83.50 

   

In1 In2 In3 Parity 

    

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

    

 

For this problem we will allow DTREG to use only 
three functions in the expression: AND, OR, NOT. 
We will use 3 genes per chromosome, and we will 
use the AND function to link the genes. After 418 
generations to train the model and an additional 397 
generations to simplify it, DTREG generated the 
following function which perfectly fits the data:  

Parity = 
(In3|(!(In1&In2)))&((!(In1|In2))|(In1&In2)|!In3)&In2|(In
1|In3)  

Where ‘|’ is the OR operator, ‘&’ is AND, and ‘!’ is 
NOT.  

GENETIC ALGORITHMS 

Genetic algorithms (GA) have been in widespread 
use since the 1980’s, but the first experiments with 
computer simulated evolution go back to 1954.  

Genetic algorithms are basically a smart search 
procedure. The goal is to find a solution in a multi-
dimensional space where there is no known exact 
algorithm. Genetic algorithms are often thousands or 
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even millions of times faster than exhaustive search 
procedures. Exhaustive search is impractical for high 
dimension problems. The use of random mutations 
allows genetic algorithms to avoid being trapped in 
locally-optimal regions which is a serious problem for 
hill-climbing algorithms typically used for 
iterative/convergence procedures. Genetic algorithms 
have been used to solve otherwise intractable 
problems such as the Traveling Salesperson Problem.  

Genetic algorithms mimic biological evolution, and the 
terms used for genetic algorithms are based on 
biological features.  

In biological DNA systems, the basic units are the 
adenine (A), thymine (T), guanine (G) and cytosine (C) 
nucleotides that join the helical strands. In genetic 
algorithms, the basic unit is called a symbol. The 
nature of symbols depends on the particular genetic 
algorithm. In gene expression programming, the 
symbols consist of functions, variables and constants. 
Symbols for variables and constants are called 
terminals, because they have no arguments.  

An ordered set of symbols form a gene, and an 
ordered set of genes form a chromosome. In GEP 
programs, genes typically have 4 to 20 symbols, and 
chromosomes are typically built from 2 to 10 genes; 
chromosomes may consist of only a single gene. The 
DNA strand for a mammal typically contains about 
5x10

9
 nucleotides.  

GENETIC ALGORITHMS FOR SYMBOLIC 
REGRESSION 

Many efforts have been made to use genetic 
algorithms to solve symbolic regression problems – 
that is, to generate symbolic functions to model data. 
One of the problems that plagues most of the efforts is 
finding a way to efficiently mutate and cross-breed 
symbolic expressions so that the resulting expressions 
have a valid mathematical syntax. For example, if you 
mutate (2*x+3) into (x 2+3*) it isn’t any good, because 
it isn’t syntactically correct.  

One approach to this problem is to perform a mutation, 
check the result and then try a different random 
mutation until a syntactically valid expression is 
generated. Obviously, this can be a time consuming 
process for complex expressions.  

A second approach is to limit what type of mutations 
can be performed – for example, only exchanging 
complete sub-expressions. The problem with this 
approach is that if limited mutations are used, the 
evolution process is hindered, and it may take a large 
number of generations to find a solution, or it may be 
completely unable to find the optimal solution.  

GENE EXPRESSION PROGRAMMING 

An elegant and efficient solution to the expression-
mutation problem was discovered in 1999 by Cândida 
Ferreira (Ferreira 1996). Ferreira devised a system for 
encoding expressions that allows fast application of a 
wide variety of mutation and cross-breeding 
techniques while guaranteeing that the resulting 
expression will always be syntactically valid. This 
approach is called Gene Expression Programming 
(GEP). Experiments have shown that GEP is 100 to 
60,000 times faster than older genetic algorithms.  

EXPRESSION TREES AND KARVA 

The key to GEP’s ability to quickly mutate valid 
expressions is the way it encodes symbols in genes. 
This notation is called the Karva Language. 
Expressions encoded using Karva are called K-
expressions. Consider the simple mathematical 
expression:  

  a*b+c 

This can be encoded as an expression tree of the 
form  

 

An expression tree is an excellent way to represent 
an expression in a computer, because the tree can 
be arbitrarily complex, and expression trees can be 
evaluated quickly.  

To convert an expression tree to the Karva notation, 
start at the left-most symbol in the top line of the tree 
and scan symbols left-to-right and top-to-bottom. 
Each time a symbol is encountered, add it to the K-
expression in left-to-right order. When there are no 
more symbols on a line, advance to the left end of the 
following line. Using this method, the tree shown 
above is converted to the K-expression:  

  +*cab 

Note that + is the first symbol found on the first line, 
at the end of that line scanning begins on the second 
line and finds * followed by c. It then starts with the 
third line and finds a and b.  
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As a second example, consider the expression 
a*b+sqrt(c*d) The corresponding expression tree is  

 

Where ‘Q’ represents square root. This can be 
translated to the K-expression  

+*Qab*cd 

The process of converting an expression tree to a K-
expression can be carried out quickly by a computer. A 
reverse process can quickly convert a K-expression 
back to an expression tree.  

GENES  

A gene consists of a fixed number of symbols encoded 
in the Karva language. A gene has two sections, the 
head and the tail. The head is used to encode 
functions for the expression. The tail is a reservoir of 
extra terminal symbols that can be used if there aren’t 
enough terminals in the head to provide arguments for 
the functions. Thus, the head can contain functions, 
variables and constants, but the tail can contain only 
variables and constants (i.e. terminals). The number of 
symbols in the head of a gene is specified as a 
parameter for the analysis. The number of symbols in 
the tail is determined by the equation  

t = h*(MaxArg-1)+1  

Where t is the number of symbols in the tail, h is the 
number of symbols in the head, and MaxArg is the 
maximum number of arguments required by any 
function that is allowed to be used in the expression. 
For example, if the head length is 6 and the allowable 
set of functions consists of binary operators (+, -, *, /), 
then the tail length is:  

t = 6*(2-1)+1 = 7  

The purpose of the tail is to provide a reservoir of 
terminal symbols (variables and constants) that can be 
used as arguments for functions in the head if there 
aren’t enough terminals in the head.  

Consider a gene with three symbols in the head and 
which uses binary arithmetic operators. The tail will 
then have 3*(2-1)+1=4 terminal symbols. Here is an 
example of such a gene. The head is in front of the 
comma, and the tail follows the comma:  

+-/,abcd 

Ignoring the distinction between the head and the tail, 
this K-expression can be converted to this expression 
tree:  

 

Note that the head of the gene consisted only of 
functions, but the tail provided enough terminals to fill 
in the arguments for the functions.  

During mutation, symbols in the head can be 
replaced by either function or terminal symbols. 
Symbols in the tail can be replaced only by 
terminals. Using the same example K-expression 
shown above, assume mutation replaces the ‘/’ 
symbol with d. Then the K-expression is:  

+-d,abcd 

And the expression tree becomes  

 

Note that this expression tree has fewer nodes than 
the previous one. This illustrates an important point: 
by allowing mutation to replace functions with 
terminals and terminals with functions, the size of the 
expression can change was well as its content. As a 
further example, assume the next mutation changes 
the first symbol in the K-expression from ‘+’ to c. The 
K-expression becomes:  

c-d,abcd 

The expression tree for this is:  

 

The “tree” consists of a single node which is the 
variable c. Note that the number of symbols in the 
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gene did not change, but some symbols are not used. 
The symbols that are not used are called the 
noncoding region of the gene. Because the functional 
length of a gene may be less than the number of 
symbols it holds, it is called an open reading frame 
(ORF). Biological genes also have noncoding regions.  

If you experiment with K-expressions you will find that 
any possible mutation will result in a valid expression 
as long as the following rules are adhered to:  

1. Symbols in the head can be replaced with 
functions, variables and constants.  

2. Symbols in the tail can be replaced only with 
variables and constants (terminals).  

3. The tail is of sufficient length to provide 
terminals for all possible functions that can 
occur in the head. (See the formula for tail 
length above.)  

This is the key to the efficiency of gene expression 
programming. It is easy for a computer program to 
follow these three rules while performing mutations, 
and it never has to check whether the resulting 
expression has valid syntax. By allowing a broad 
range of mutations, the process can efficiently explore 
a high dimensional space, and the expressions can 
change in size as functions are replaced by terminals 
and terminals by functions.  

CHROMOSOMES AND LINKING FUNCTIONS 

A chromosome consists of one or more genes. The 
number of genes in a chromosome is a parameter for 
the analysis. If there is more than one gene in a 
chromosome, then a linking function is used to join the 
genes in the final function. The linking function can be 
static or evolving.  

For example, consider a chromosome with two genes 
having the K-expressions:  

Gene 1: *ab  
Gene 2: /cd  

If ‘+’ is used as the static linking function, then the 
combined expression is:  

 

Which is equivalent to (a*b+c/d).  

MUTATION, INVERSION, TRANSPOSITION 
AND RECOMBINATION 

In order for a population to improve from generation to 
generation innovations must occur that cause some 
individuals to have qualities never before seen. These 
innovations come about from mutation. In gene 
expression programming there are several types of 
mutation, some are simple random changes in the 
symbols of genes, others are more complex involving 
reversing the order of symbols or transposing symbols 
or genes within the chromosome.  

Mutation is not necessarily beneficial; often the 
change results in a less fit individual or in an unviable 
individual who cannot survive. But there is a 
possibility that a mutation may produce an individual 
with extraordinary qualities – a “genius” individual. 
The operation of evolution depends on mutations 
producing some individuals with greater fitness. 
Through natural selection, their offspring improve the 
overall quality of the population. As described above, 
elitism guarantees that a genius never dies unless a 
better genius is found to take its place. If elitism 
applied to people, Isaac Newton might have lived 
until Albert Einstein was born, and Einstein might still 
be alive today.  

Several types of mutation are used by gene 
expression programming:  

 Mutation – Simple mutation just replaces 
symbols in genes with replacement symbols. 
Symbols in the heads of genes can be 
replaced by functions or terminals (variables 
and constants). Symbols in the tail sections 
can be replaced only by terminals.  

 Inversion – Inversion reverses the order of 
symbols in a section of a gene.  

 Transposition – Transposition selects a 
group of symbols and moves the symbols to 
a different position within the same gene. 
Gene transposition moves entire genes 
around in the chromosome.  

 Recombination – During recombination, two 
chromosomes are randomly selected, and 
genetic material is exchanged between them 
to produce two new chromosomes. It is 
analogous to the process that occurs when 
two individuals are bred, and the offspring 
share a mixture of genetic material from both 
parents.  



 

 

Swati Agrawal1  Dr.P.C.Gupta2 

w
w

w
.i

g
n

it
e

d
.i
n

 

6 

 

 Introduction to Gene Expression Programming 

PARSIMONY PRESSURE AND EXPRESSION 
SIMPLIFICATION 

If two expressions do an equally good job of fitting a 
data set, the simpler expression is usually preferred. 
For symbolic regression, complexity is measured by 
the number of symbols and functions in the 
expression. Gene expression programming has two 
techniques for selecting simpler expressions over 
more complex ones.  

The first approach is to adjust the fitness scores of 
individuals so that fitness is reduced by an amount 
proportional to the complexity of the expression. This 
penalty for complexity is called parsimony pressure. 
DTREG allows you to specify how much parsimony 
pressure is applied.  

While parsimony pressure is effective at guiding 
evolution toward simpler expressions, experiments 
have shown that parsimony pressure may hinder the 
process of evolving toward greater fitness. It is not 
uncommon for more complex expressions to do a 
better job of fitting than less complex ones, so pushing 
evolution to favor simpler expressions may increase 
the number of generations required to find a solution, 
or it may make it impossible to find a good solution. If 
parsimony pressure is used, you also should build a 
model with it turned off, and verify that the simpler 
solution does not lose significant accuracy.  

The second approach to finding parsimonious 
solutions is to divide the task into two phases: (1) 
primary training without parsimony pressure, and (2) 
secondary training which uses parsimony pressure. 
Since the primary training is done without parsimony 
pressure, evolution can focus on finding the most 
accurate model as quickly as possible. Once primary 
training is finished, a second round of training begins 
using the final population from primary training as the 
starting population for the secondary training.  

During secondary training, parsimony pressure is used 
to try to find a simpler expression that is at least as 
good as the best one found during primary training. 
While secondary training is being performed, the 
primary goal is still to improve accuracy, and the 
secondary goal is to find simpler expressions. So a 
simpler expression will be selected only if its accuracy 
meets or exceeds the best accuracy previously found. 
If a more accurate expression is found, it is used even 
if the result is an increase in complexity. So it is 
possible that during the secondary training complexity 
could actually increase in order to improve accuracy. 
But experiments have shown that this rarely happens, 
and secondary training usually results in simpler 
expressions. Since there is never any risk of losing 
accuracy with this approach, and it may result in a 
simpler and possibly more accurate expression, it is 
recommended.  
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