

REVIEW ARTICLE

Study of Political Representations: Diplomatic
Missions of Early Indian to Britain

Journal of
Advances and

Scholarly

Researches in
Allied Education

Vol. 3, Issue 6,
April-2012,

ISSN 2230-7540

Journal of Advances in
Science and Technology

Vol. IV, No. VII, November-
2012, ISSN 2230-9659

INTRODUCTION TO MULTI-LAYER FEED-
FORWARD NEURAL NETWORKS

www.ignited.in

Swati Agrawal

w
w

w
.i

gn
it

e
d

.i
n

1

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

Introduction to Multi-Layer Feed-Forward Neural
Networks

Swati Agrawal1 Dr. P. C. Gupta2

Research Scholar, Jaipur National University, Jaipur, Rajasthan.

Head of Computer Sci. Dept.,Jaipur National University (Raj.)

Abstract - Basic definitions concerning the multi-layer feed-forward neural networks are given. The back-

propagation training algorithm is explained. Partial derivatives of the objective function with respect to

the weight and threshold coefficients are derived. These derivatives are valuable for an adaptation

process of the considered neural network. Training and generalisation of multi-layer feed-forward neural

networks are discussed. Improvements of the standard back-propagation algorithm are reviewed.

Example of the use of multi-layer feed-forward neural networks for prediction of carbon-13 NMR chemical

shifts of alkanes is given. Further applications of neural networks in chemistry are reviewed. Advantages

and disadvantages of multilayer feed-forward neural networks are discussed.

---------------------------♦-----------------------------

1. INTRODUCTION

Artificial neural networks (ANNs) [1] are networks of
simple processing elements (called 'neurons')
operating on their local data and communicating with
other elements. The design of ANNs was motivated by
the structure of a real brain, but the processing
elements and the architectures used in ANN have
gone far from their biological inspiration.

There exist many types of neural networks, e.g. see
[2], but the basic principles are very similar. Each
neuron in the network is able to receive input signals,
to process them and to send an output signal. Each
neuron is connected at least with one neuron, and
each connection is evaluated by a real number, called
the weight coefficient, that reflects the degree of
importance of the given connection in the neural
network.

In principle, neural network has the power of a
universal approximator, i.e. it can realise an arbitrary
mapping of one vector space onto another vector
space [3]. The main advantage of neural networks is
the fact, that they are able to use some a priori un-
known information hidden in data (but they are not
able to extract it). Process of 'capturing' the unknown
information is called 'learning of neural network' or
'training of neural network'. In mathematical formalism
to learn means to adjust the weight coefficients in such
a way that some conditions are fulfilled.

There exist two main types of training process:
supervised and unsupervised training. Supervised
training (e.g. multi-layer feed-forward (MLF) neural
network) means, that neural network knows the de-
sired output and adjusting of weight coefficients is

done in such way, that the calculated and desired
outputs are as close as possible. Unsupervised train-
ing (e.g. Kohonen network [4]) means, that the de-
sired output is not known, the system is provided with
a group of facts (patterns) and then left to itself to
settle down (or not) to a stable state in some number
of iterations.

2. MULTI-LAYER FEED-FORWARD (MLF)
NEURAL NETWORKS

MLF neural networks, trained with a back-propa-
gation learning algorithm, are the most popular neural
networks. They are applied to a wide variety of
chemistry related problems [5].

output layer

hidden layer

input layer

Swati Agrawal

w
w

w
.i

g
n

it
e

d
.i
n

2

 Introduction to Multi-Layer Feed-Forward Neural Networks

Fig. 1. Typical feed-forward neural network composed
of three layers.

A MLF neural network consists of neurons, that are
ordered into layers (Fig. 1). The first layer is called the
input layer, the last layer is called the out- mation in
Eq. (2) is carried out over all neurons j transferring the
signal to the ith neuron). The threshold coefficient can
be understood as a weight coefficient of the
connection with formally added neuron j, where Xj = 1
(so-called bias).

For the transfer function it holds that

/(f) = 1 + exp(— £) (3)

The supervised adaptation process varies the
threshold coefficients and weight coefficients a)^ to
minimise the sum of the squared differences between
the computed and required output values. This is
accomplished by minimisation of the objective function
E:

E-LH'o-to)
1
 4)put layer, and the layers between

are hidden layers. For the formal description of the
neurons we can use the so-called mapping function r,
that assigns for each neuron i a subset r(i) c V which
consists of all ancestors of the given neuron. A subset
V than consists of all predecessors of the given neuron
i. Each neuron in a particular layer is connected with
all neurons in the next layer. The connection between
the ith and y'th neuron is characterised by the weight
coefficient and the ith neuron by the threshold
coefficient (Fig. 2).

3. BACK-PROPAGATION TRAINING
ALGORITHM

In back-propagation algorithm the steepest-descent
minimisation method is used. For adjustment of the
weight and threshold coefficients it holds that:

where A is the rate of learning (A > 0). The key
problem is calculation of the derivatives dE/dco^ a
dE/dty. Calculation goes through next steps: First step
because the output error propagates from the output
layer through the hidden layers to the input layer.

Based on the above given approach the derivatives of
the objective function for the output layer and then for
the hidden layers can be recurrently calculated. This
algorithm is called the back-propagation

4. TRAINING AND GENERALISATION

The MLF neural network operates in two modes:
training and prediction mode. For the training of the
MLF neural network and for the prediction using the
MLF neural network we need two data sets, the
training set and the set that we want to predict (test
set).

The training mode begins with arbitrary values of the
weights - they might be random numbers - and
proceeds iteratively. Each iteration of the complete
training set is called an epoch. In each epoch the net-
work adjusts the weights in the direction that reduces
the error (see back-propagation algorithm). As the it-
erative process of incremental adjustment continues,
the weights gradually converge to the locally optimal
set of values. Many epochs are usually required before
training is completed.

For a given training set, back-propagation learning
may proceed in one of two basic ways: pattern mode
and batch mode. In the pattern mode of back-
propagation learning, weight updating is performed
after the presentation of each training pattern. In the
batch mode of back-propagation learning, weight up-
dating is performed after the presentation of all the
training examples (i.e. after the whole epoch). From
an 'on-line' point of view, the pattern mode is pre-
ferred over the batch mode, because it requires less
local storage for each synaptic connection. More-
over, given that the patterns are presented to the
network in a random manner, the use of pattern-by-
pattern updating of weights makes the search in
weight space stochastic, which makes it less likely
for the back-propagation algorithm to be trapped in a
local minimum. On the other hand, the use of batch
mode of training provides a more accurate estimate
of the gradient vector. Pattern mode is necessary to
use for example in on-line process control, because
there are not all of training patterns available in the
given time. In the final analysis the relative
effectiveness of the two training modes depends on
the solved problem [6,7], In prediction mode,
information flows forward through the network, from
inputs to outputs. The net- work processes one
example at a time, producing an estimate of the
output value(s) based on the input values. The
resulting error is used as an estimate of the quality of
prediction of the trained network.

Swati Agrawal

w
w

w
.i

gn
it

e
d

.i
n

3

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

In back-propagation learning, we usually start with a
training set and use the back-propagation algorithm to
compute the synaptic weights of the network. The
hope is that the neural network so designed will gen-
eralise. A network is said to generalise well when the
input-output relationship computed by network is
correct (or nearly correct) for input/output patterns
never used in training the network. Generalisation is
not a mystical property of neural networks, but it can
be compared to the effect of a good non-linear inter-
polation of the input data [8]. Principle of generalisa-
tion is shown in Fig. 3a. When the learning process is
repeated too many iterations (i.e. the neural network is
overtrained or overfitted, between over- trainig and
overfitting is no difference), the network may memorise
the training data and therefore be less able to
generalise between similar input-output patterns. The
network gives nearly perfect results for examples from
the training set, but fails for examples from the test set.
Overfitting can be compared to improper choose of the
degree of polynom in the polynomial regression (Fig.
3b). Severe overfitting can occur with noisy data, even
when there are many more training cases than
weights.

The basic condition for good generalisation is suf-
ficiently large set of the training cases. This training set
must be in the same time representative subset of the
set of all cases that you want to generalise to. The
importance of this condition is related to the fact that
there are two different types of generalisation: inter-
polation and extrapolation. Interpolation applies to
cases that are more or less surrounded by nearby
training cases; everything else is extrapolation. In
particular, cases that are outside the range of the
training data require extrapolation. Interpolation can
often be done reliably, but extrapolation is notoriously
unreliable. Hence it is important to have sufficient
training data to avoid the need for extrapolation.
Methods for selecting good training sets arise from
experimental design [9].

For an elementary discussion of overfitting, see [10].
For a more rigorous approach, see the article by
Geman et al. [11].

Given a fixed amount of training data, there are some
effective approaches to avoiding overfitting, and hence
getting good generalisation:

4.1. MODEL SELECTION

The crucial question in the model selection is 'How
many hidden units should I use?'. Some books and
articles offer 'rales of thumb' for choosing a topology,
for example the size of the hidden layer to be
somewhere between the input layer size and the
output layer size [12] or some other rules, but such
rules are total nonsense. There is no way to determine
a good network topology just from the number of
inputs and outputs. It depends critically on the number
of training cases, the amount of noise, and the
complexity of the function or classification you are
trying to learn. An intelligent choice of the number of
hidden units depends on whether you are using early
stopping (see later) or some other form of regu-
larisation (see weight decay). If not, you must simply
try many networks with different numbers of hidden
units, estimate the generalisation error for each one,
and choose the network with the minimum estimated
generalisation error.

Other problem in model selection is how many hidden
layers use. In multi-layer feed forward neural network
with any of continuous non-linear hidden- layer
activation functions, one hidden layer with an
arbitrarily large number of units suffices for the 'uni-
versal approximation' property [13-15]. Anyway, there
is no theoretical reason to use more than two hidden
layers. In [16] was given a constructive proof about
the limits (large, but limits nonetheless) on the
number of hidden neurons in two-hidden neural net-
works. In practise, we need two hidden layers for the
learning of the function, that is mostly continuous, but
has a few discontinuities [17]. Unfortunately, using
two hidden layers exacerbates the problem of local
minima, and it is important to use lots of random ini-
tialisations or other methods for global optimisation.
Other problem is, that the additional hidden layer
makes the gradient more unstable, i.e. that training
process slows dramatically. It is strongly recom-
mended use one hidden layer and then, if using a
large number of hidden neurons does not solve the
problem, it may be worth trying the second hidden
layer.

4.2. WEIGHT DECAY

Weight decay adds a penalty term to the error
function. The usual penalty is the sum of squared
weights times a decay constant. In a linear model,
this form of weight decay is equivalent to ridge
regression. Weight decay is a subset of regularisation
methods. The penalty term in weight decay, by defi-
nition, penalises large weights. Other regularisation
methods may involve not only the weights but various
derivatives of the output function [15]. The weight
decay penalty term causes the weights to converge
to smaller absolute values than they otherwise would.
Large weights can hurt generalisation in two different

Swati Agrawal

w
w

w
.i

g
n

it
e

d
.i
n

4

 Introduction to Multi-Layer Feed-Forward Neural Networks

ways. Excessively large weights leading to hidden
units can cause the output function to be too rough,
possibly with near discontinuities. Excessively large
weights leading to output units can cause wild outputs
far beyond the range of the data if the output activation
function is not bounded to the same range as the data.
The main risk with large weights is that the non-linear
node outputs could be in one of the flat parts of the
transfer function, where the derivative is zero. In such
case the learning is irreversibily stoped. This is why
Fahlman [41] proposed to use the modification /(£)(1 -
/(£)) + 0-1 instead of /(£)(1 -/(£)) (see p. 17). The
offset term allows the continuation of the learning even
with large weights. To put it another way, large weights
can cause excessive variance of the output [11], For
discussion of weight decay see for example [18].

4.3. EARLY STOPPING

Early stopping is the most commonly used method for
avoiding overfitting. The principle of early stopping is
to divide data into two sets, training and validation, and
compute the validation error periodically during
training. Training is stopped when the validation error
rate starts to go up. It is important to realise that the
validation error is not a good estimate of the
generalisation error. One method for getting an
estimate of the generalisation error is to run the net on
a third set of data, the test set, that is not used at all
during the training process [19]. The disadvantage of
split-sample validation is that it reduces the amount of
data available for both training and validation.

Other possibility how to get an estimate of the
generalisation is to use the so-called cross-validation
[20]. Cross-validation is an improvement on split-
sample validation that allows you to use all of the data
for training. In &-fold cross-validation, you divide the
data into k subsets of equal size. You train the net k
times, each time leaving out one of the subsets from
training, but using only the omitted subset to compute
whatever error criterion interests you. If k equals the
sample size, this is called leave-one-out cross-
validation. While various people have suggested that
cross-validation be applied to early stopping, the
proper way of doing that is not obvious. The disad-
vantage of cross-validation is that you have to retrain
the net many times. But in the case of MLF neural
networks the variability between the results obtained
on different trials is often caused with the fact, that the
learning was ended up in many different local minima.
Therefore the cross-validation method is more suitable
for neural networks without the danger to fall into local
minima (e.g. radial basis function, RBF, neural
networks [83]). There exist a method similar to the
cross-validation, the so-called bootstrapping [21,22].
Bootstrapping seems to work better than cross-
validation in many cases.

Early stopping has its advantages (it is fast, it requires
only one major decision by the user: what proportion of
validation cases to use) but also some disadvantages
(how many patterns are used for training and for

validation set [23], how to split data into training and
test set, how to know that validation error really goes
up).

5. ADVANTAGES AND DISADVANTAGES OF
MLF NEURAL NETWORKS

The application of MLF neural networks offers the
following useful properties and capabilities:

1. Learning. ANNs are able to adapt without as-
sistance of the user.

2. Nonlinearity. A neuron is a non-linear device.
Consequently, a neural network is itself non-
linear. Nonlinearity is very important property,
particularly, if the relationship between input
and output is inherently non-linear.

3. Input-output mapping. In supervised training,
each example consists of a unique input
signal and the corresponding desired
response. An example picked from the
training set is presented to the network, and
the weight coefficients are modified so as to
minimise the difference between the desired
output and the actual response of the
network. The training of the network is
repeated for many examples in the training
set until the network reaches the stable
state. Thus the network learns from the
examples by constructing an input-output
mapping for the problem.

4. Robustness. MLF neural networks are very
robust, i.e. their performance degrades
gracefully in the presence of increasing
amounts of noise (contrary e.g. to PLS).

However, there are some problems and disadvan-
tages of ANNs too. For some problems approxima-
tion via sigmoidal functions ANNs are slowly con-
verging - a reflection of the fact that no physical in-
sight is used in the construction of the approximating
mapping of parameters on the result. The big prob-
lem is the fact, that ANNs cannot explain their pre-
diction, the processes taking place during the
training of a network are not well interpretable and
this area is still under development [24,25]. The
number of weights in an ANN is usually quite large
and time for training the ANN is too high.

6. IMPROVEMENTS OF BACK-
PROPAGATION ALGORITHM

The main difficulty of standard back-propagation
algorithm, as it was described earlier, is its slow con-
vergence, which is a typical problem for simple gra-
dient descent methods. As a result, a large number
of modifications based on heuristic arguments have
been proposed to improve the performance of
standard back-propagation. From the point of view of

Swati Agrawal

w
w

w
.i

gn
it

e
d

.i
n

5

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

optimisation theory, the difference between the desired
output and the actual output of an MLF neural network
produces an error value which can be expressed as a
function of the network weights. Training the network
becomes an optimisation problem to minimise the error
function, which may also be considered an objective or
cost function. There are two possibilities to modify
convergence behaviour, first to modify the objective
function and second to modify the procedure by which
the objective function is optimised. In a MLF neural
network, the units (and therefore the weights) can be
distinguished by their connectivity, for example
whether they are in the output or the hidden layer. This
gives rise to a third family of possible modifications,
differential scaling.

6.1. MODIFICATIONS TO THE OBJECTIVE
FUNCTION AND DIFFERENTIAL SCALING

Differential scaling strategies and modifications to the
objective function of standard back-propagation are
usually suggested by heuristic arguments. Modi-
fications to the objective function include the use of
different error metrics and output or transfer functions.

Several logarithmic metrics have been proposed as an
alternative to the quadratic error of standard back-
propagation. For a speech recognition problem,
Franzini [26] reported a reduction of 50% in learning
time using (12) compared to quadratic error (p is the
number of patterns, o is the number of output
neurons). The most frequently used alternative error
metrics are motivated by information theoretic learning
paradigms [27,28], A commonly used form, often
referred to as the cross-entropy function, is k (13)

Training a network to minimise the cross-entropy
objective function can be interpreted as minimising the
Kullback-Liebler information distance [29] or
maximising the mutual information [30]. Faster learning
has frequently been reported for information theoretic
error metrics compared to the quadratic error [31,32].
Learning with logarithmic error metrics was also less
prone to get stuck in a local minima [31,32].

The sigmoid logistic function used by standard back-
propagation algorithm can be generalised to In
standard back-propagation K = D = 1 and L 0. The
parameter D (sharpness or slope) of the sig- moidal
transfer function can be absorbed into weights without
loss of generality [33] and it is therefore set to one in
most treatments. Lee and Bien [34] found that a
network was able to more closely approximate a
complex non-linear function when the back-propa-
gation algorithm included learning the parameters K, D
and L as well as weights. A bipolar sigmoid function
(tanh) with asymptotic bounds at — 1 and +1 is
frequently used to increase the convergence speed.
Other considerations have led to the use of different
functions [35] or approximations [36].

Scaling the learning rate of a unit by its connectivity
leads to units in different layers having different values
of learning rate. The simplest version, dividing learning
rate by the fan-in (the fan-in of a unit is the number of
input connections it has with units in the preceding
layer), is frequently used [37,38],

Other scaling methods with higher order dependence
to fan-in or involving the number of connections be-
tween a layer and both its preceding and succeeding
layers have also been proposed to improve conver-
gence [39,40], Samad [36] replaced the derivative of
the logistic function /'(£)=/UX 1 -/(f)) for the output unit
by its maximum value of 0.25 as well as dividing the
backpropagated error by the fan-out (the fan-out of
the unit is the number of output connections it has to
units in the succeeding layer) of the source unit.
Fahlman [41] found that /(£)(! -/(£)) + 0.1 worked
better than either /(£)(! -/(£)) or its total removal from
the error formulae.

6.2. MODIFICATIONS TO THE OPTIMISATION
ALGORITHM

Optimisation procedures can be broadly classified
into zero-order methods (more often referred to as
minimisation without evaluating derivatives) which
make use of function evaluations only, first order
methods which make additional use of the gradient
vector (first partial derivatives) and second order
methods that make additional use of the Hessian
(matrix of second partial derivatives) or its inverse. In
general, higher order methods converge in fewer iter-
ations and more accurately than lower order methods
because of the extra information they employ but they
require more computation per iteration.

Minimisation using only function evaluation is a little
problematic, because these methods do not scale
well to problems having in excess of about 100 pa-
rameters (weights). However Battiti and Tecchiolli
(42) employed two variants of the adaptive random
search algorithm (usually referred as random walk
(43) and reported similar results both in speed and
generalisation to back-propagation with adaptive
stepsize. The strategy in random walk is to fix a step
size and attempt to take a step in any random direc-
tion from the current position. If the error decreases,
the step is taken or else another direction is tried. If
after a certain number of attempts a step cannot be
taken, the stepsize is reduced and another round of
attempts is tried. The algorithm terminates when a
step cannot be taken without reducing the stepsize
below a threshold value. The main disadvantage of
random walk is that its success depends upon a care-
ful choice of many tuning parameters. Another algo-
rithm using only function evaluations is the polytope,
in which the network weights form the vertices of a
polytope [44]. The polytope algorithm is slow but is
able to reduce the result of objective function to a

Swati Agrawal

w
w

w
.i

g
n

it
e

d
.i
n

6

 Introduction to Multi-Layer Feed-Forward Neural Networks

lower value than standard back-propagation [45]. In
the last years also some stochastic minimisation al-
gorithms, as e.g. simulated annealing [46,47], were
tried for adjusting the weight coefficients [48]. The
disadvantage of these algorithms is their slowness, if
their parameters are set so, that algorithms should
converge into global minima of the objective function.
With faster learning they tend to fall into deep narrow
local minima, with results similar to overfit- ting. In
practice they are therefore usually let run for a short
time, and the resulting weights are used as initial
parameters for backpropagation.

Classical steepest descent algorithm without the
momentum is reported [42] to be very slow to con-
verge because it oscillates from side to side across the
ravine. The addition of a momentum term can help
overcome this problem because the step direction is
no longer steepest descent but modified by the previ-
ous direction.

In effect, momentum utilises second order information
but requires only one step memory and uses only local
information. In order to overcome the poor conver-
gence properties of standard back-propagation, nu-
merous attempts to adapt learning rate and momen-
tum have been reported. Vogl et al. [49] adapted both
learning step and momentum according to the change
in error on the last step or iteration. Another adaptive
strategy is to modify the learning parameters accord-
ing to changes in step direction as opposed to
changes in the error value. A measure of the change
in step direction is gradient correlation or the angle
between the gradient vectors VEn and VEn _,. The
learning rules have several versions [26,50], Like
standard back-propagation the above adaptive
algorithms have one value of learning term for each
weight in the network. Another option is to have an
adaptive learning rate for each weight in the network.
Jacobs [51] proposed four heuristics to achieve faster
rates of convergence. A more parsimonious strategy,
called SuperSAB [52], learned three times faster than
standard back-propagation. Other two methods that
are effective are Quickprop [43] and RPROP [53].
Chen and Mars [54] report an adaptive strategy which
can be implemented in pattern mode learning and
which incorporates the value of the error change
between iterations directly into the scaling of learning
rate.

Newton's method for optimisation uses Hessian matrix
of second partial derivatives to compute step length
and direction. For small scale problems where the
second derivatives are easily calculated the method is
extremely efficient but it does not scale well to larger
problems because not only the second partial
derivatives have to be calculated at each iteration but
the Hessian must also be inverted. A way how to avoid
this problem is to compute an approximation to the
Hessian or its inverse iteratively. Such methods are
described as quasi-Newton or variable metric. There
are two frequently used versions of quasi-Newton: the
Davidson-Fletcher-Powell (DFP) algorithm and the

Broydon-Fletcher-Goldfarb- Shanno (BFGS) algorithm.
In practise, van der Smagt (54) found DFP to converge
to a minimum in only one third of 10000 trials. In a
comparison study, Barnard (55) found the BFGS
algorithm to be similar in average performance to
conjugate gradient. In a function estimation problem
[45], BFGS was able to reduce the error to a lower
value than conjugate gradient, standard back-
propagation and a polytope algorithm without
derivatives. Only the Levenberg-Marquardt method
[57-59] reduced the error to a lower value than BFGS.
The main disadvantage of these methods is that
storage space of Hessian matrix is proportional to the
squarednumber of weights of the network.

An alternative second-order minimisation technique is
conjugate gradient optimisation [60-62], This algorithm
restricts each step direction to be conjugate to all
previous step directions. This restriction simplifies
the computation greatly because it is no longer
necessary to store or calculate the Hessian or its
inverse. There exist two main versions of conjugate
gradients: Fletcher-Reeves version [63] and Po- lak-
Ribiere version [64], The later version is said to be
faster and more accurate because the former makes
more simplifying assumptions. Performance compar-
ison of standard back-propagation and traditional
conjugate gradients seems to be task dependent.
For example, according to [55] Fletcher-Reeves
conjugate gradients were not as good as standard
back- propagation on the XOR task but better than
standard back-propagation on two function
estimation tasks. Another point of comparison
between algorithms is their ability to reduce error on
learning the training set. De Groot and Wurtz [45]
report that conjugate gradients were able to reduce
error on a function estimation problem some 1000
times than standard back-propagation in 10 s of CPU
time. Comparing conjugate gradients and standard
back-propagation without momentum on three
different classification tasks, method of conjugate
gradients was able to reduce the error more rapidly
and to a lower value than back-propagation for the
given number of iterations [65]. Since most of the
computational burden in conjugate gradients
algorithms involves the line search, it would be an
advantage to avoid line searches by calculating the
stepsize analytically. Moller [66] has introduced an
algorithm, which did this, making use of gradient
difference information.

7. APPLICATIONS OF NEURAL NETWORKS
IN CHEMISTRY

Interests in applications of neural networks in
chemistry have grown rapidly since 1986. The num-
ber of articles concerning applications of neural net-
works in chemistry has an exponentially increasing
tendency ([5], p. 161). In this part some papers deal-
ing with the use of back-propagation MLF neural
networks in chemistry will be reviewed. Such papers
cover a broad spectrum of tasks, e.g. theoretical as-
pects of use of the neural networks, various

Swati Agrawal

w
w

w
.i

gn
it

e
d

.i
n

7

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

problems in spectroscopy including calibration, study
of chemical sensors applications, QSAR studies,
proteins folding, process control in chemical industry,
etc.

7.1. THEORETICAL ASPECTS OF THE USE OF
BACK-PROPAGATION MLF NEURAL
NETWORKS

Some theoretical aspects of neural networks were
discussed in chemical literature. Tendency of MLF
ANN to 'memorise' data (i.e. the predictive ability of
network is substantially lowered, if the number of
neurons in hidden layer is increased - parabolic de-
pendence) is discussed in [67], The network described
in this article was characterised by a parameter p, that
is the ratio of the number of data points in a learning
set to the number of connections (i.e., the number of
ANN internal degrees of freedom). This parameter was
analysed also in [68,69]). In several other articles
some attention was devoted to analysis of the ANN
training. The mean square error MSE is used as a
criterion of network training.

(# of compds. X # of out units)

While the MSE for a learning set decreases with time
of learning, predictive ability of the network has
parabolic dependence. It is optimal to stop net training
before complete convergence has occurred (the so-
called 'early stopping') [70]. In [71] were shown
benefits of statistical averaging of network prognosis.
The problem of overfitting and the importance of cross-
validation were studied in [72], Some methods of the
design of training and test set (i.e. methods raised
from experimental design) were discussed in [9].
Together with the design of training and test set stands
in the forefront of interest also a problem which
variables to use as input into the neural networks
('feature selection'). For the determining the best
subset of a set containing n variables there exist
several possibilities:

• A complete analysis of all subsets. This analy-
sis is possible only for small number of
descriptors. It was reported only for linear
regression analysis, not for the neural
networks.

• A heuristic stepwise regression analysis. This
type of methods includes forward, backward
and Efroymson's forward stepwise regression
based on the value of the F-test. Such
heuristic approaches are widely used in
regression analysis [73], Another possibility is
to use a stepwise model selection based on
the Akaike information criterion [74], Similar
approaches were also described as methods
for feature selection for neural networks [75].

• A genetic algorithm, evolutionary program-
ming. Such methods were not used for neural
networks because of their high computational
demands. Application of these techniques for
linear regression analysis was reported [76-
78].

• Direct estimations (pruning methods). These
techniques are most widely used by the ANN
researchers. An evaluation of a variable by
such methods is done by introducing a
sensitivity term for variable. Selection of
variables by such methods in QSAR studies
was pioneered by Wikel and Dow [79]. Sev-
eral pruning methods were used and
compared in [80],

Some work was also done in the field of improvement
of the standard back-propagation algorithm, e.g. by
use of the conjugate gradient algorithm [81] or the
Flashcard Algorithm [82], that is reported to be able
to avoid local minima. Other possibility to avoid local
minima is to use another neural network architecture.
Among the most promising belongs the radial basis
neural (RBF) neural network [83], RBF and MLF ANN
were compared in [84].

7.2 SPECTROSCOPY

The problem of establishing correlation between
different types of spectra (infrared, NMR, UV, VIS,
etc.) and the chemical structure of the corresponding
compound is so crucial, that the back-propagation
neural networks approach was applied in many spec-
troscopic problems. The main two directions in the
use of neural networks for spectroscopy related prob-
lems are the evaluation of the given spectrum and the
simulation of the spectrum of the given compound.
Almost all existing spectra have been used as inputs
to the neural networks (i.e. evaluation): NMR spectra
[85-88], mass spectra [89-93], infrared spectra
[94,95,84,96-98], fluorescence [99] and X-ray fluo-
rescence spectra [100-102], gamma ray spectra
[103,104], Auger electron spectra [105], Raman spec-
tra [106,107], Mossbauer spectra [108], plasma spec-
tra [109], circular dichroism spectra [110,111], An-
other type of neural networks application in spec-
troscopy is the prediction of the spectrum of the given
compound (Raman: [112], NMR: [113-115], IR:
[116]).

7.3 PROCESS CONTROL

In process control almost all the data come from non-
linear equations or from non-linear processes and are
therefore very hard to model and predict. Process
control was one of the first fields in chemistry to
which the neural network approach was applied. The
basic problems in the process control and their solu-

Swati Agrawal

w
w

w
.i

g
n

it
e

d
.i
n

8

 Introduction to Multi-Layer Feed-Forward Neural Networks

tion using neural networks are described in [117], The
main goal of such studies is to receive a network that
is able to predict a potential fault before it occurs
[118,119], Another goal of neural networks application
in process control is control of the process itself. In
[120] a method for extracting information from
spectroscopic data was presented and studied by
computer simulations. Using a reaction with non- trivial
mechanism as model, outcomes in form of spectra
were generated, coded, and fed into a neural network.
Through proper training the network was able to
capture the information concerning the reaction
hyperplane, and predict outcomes of the reaction
depending on past history. Kaiming et al. in their article
[121] used a neural network control strategy for fed-
batch baker's yeast cultivation. A non-linear single-
input single-output system was identified by the neural
network, where the input variable was the feed rate of
glucose and the output variable was the ethanol
concentration. The training of the neural network was
done by using the data of on-off control. The
explanation of results showed that such neural
network could control the ethanol concentration at the
setpoint effectively. In a review [122] are stated 27
references of approaches used to apply intelligent
neural-like (i.e., neural network-type) signal processing
procedures to solve a problem of acoustic emission
and active ultrasonic process control measurement
problems.

7.4. PROTEIN FOLDING

Proteins are made up of elementary building blocks,
the amino acids. These amino acids are arranged
sequentially in a protein, the sequence is called the
primary structure. This linear structure folds and turns
into three-dimensional structure that is referred as
secondary structure (a-helix, /3-sheet). Because the
secondary structure of a protein is very important to
biological activity of the protein, there is much interest
in predicting the secondary structures of proteins from
their primary structures. In recent years numerous
papers have been published on the use of neural
networks to predict secondary structure of proteins
from their primary structure. The pioneers in this field
were Qian and Sejnowski [123], Since this date many
neural networks systems for predicting secondary
structure of proteins were de- veloped. For example,
Vieth et al. [124] developed a complex, cascaded
neural network designed to predict the secondary
structure of globular proteins. Usually the prediction of
protein secondary structure by a neural network is
based on three states (alpha- helix, beta-sheet and
coil). However, there was a recent report of a protein
with a more detailed secondary structure, the 310-
helix. In application of a neural network to the
prediction of multi-state secondary structures [125],
some problems were discussed. The prediction of
globular protein secondary structures was studied by a
neural network. Application of a neural network with a
modular architecture to the prediction of protein
secondary structures (alpha-helix, beta-sheet and coil)
was presented. Each module was a three-layer neural

network. The results from the neural network with a
modular architecture and with a simple three-layer
structure were compared. The prediction accuracy by
a neural network with a modular architecture was
reported higher than the ordinary neural network.
Some attempts were also done to predict tertiary
structure of proteins. In [126] is described a software
for the prediction of the 3-di- mensional structure of
protein backbones by neural network. This software
was tested on the case of group of oxygen transport
proteins. The success rate of the distance constraints
reached 90%, which showed its reliability.

7.5. QUANTITATIVE STRUCTURE ACTIVITY
RELATIONSHIP

Quantitative structure activity relationship (QSAR) or
quantitative structure property relationship (QSPR)
investigations in the past two decades have made
significant progress in the search for quantitative
relations between structure and property. The basic
modelling method in these studies is a multilinear
regression analysis. The non-linear relationships
were successfully solved by neural networks, that in
this case act as a function aproximator. The use of
feed-forward back-propagation neural networks to
perform the equivalence of multiple linear regression
has been examined in [127] using artificial structured
data sets and real literature data. Neural networks
predictive ability has been assessed using leave-
one-out cross-validation and training/test set
protocols. While networks have been shown to fit
data sets well, they appear to suffer from some dis-
advantages. In particular, they have performed
poorly in prediction for the QSAR data examined in
this work, they are susceptible to chance effects, and
the relationships developed by the networks are
difficult to interpret. Other comparison between
multiple linear regression analysis and neural
networks can be found in [128,129]. In a review (113
refs.) [130] QSAR analysis was found to be
appropriate for use with food proteins. PLS (partial
least-squares regression), neural networks, multiple
regression analysis and PCR (principal component
regression) were used for modelling of hydrophobity
of food proteins and were compared. Neural
networks can be also used to perform analytical
computation of similarity of molecular electrostatic
potential and molecular shape [131]. Concrete
applications of the neural networks can be found for
example in [132-135].

7.6. ANALYTICAL CHEMISTRY

The use of neural networks in analytical chemistry is
not limited only to the field of spectroscopy. The
general use of neural networks in analytical
chemistry was discussed in [136], Neural networks
were successfully used for prediction of chromatog-
raphy retention indices [137-139], or in analysis of
chromatographic signals [140]. Also processing of

Swati Agrawal

w
w

w
.i

gn
it

e
d

.i
n

9

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

signal from the chemical sensors was intensively
studied [141-144].

8. INTERNET RESOURCES

In World-Wide-Web you can find many information
resources concerning neural networks and their
applications. This chapter will provide general infor-
mation about such resources.

The news Usenet group comp.ai.neural-nets is in-
tended as a discussion forum about artificial neural
networks. There is an archive of comp.ai.neural-nets
on the WWW at http://asknpac.npac.syr.edu. The
frequently asked question (FAQ) list from this news-
group can be found in http://ftp://ftp.sas.com/
pub/neural/FAQ.html. Others news groups partially
connected with neural networks are comp.the- ory.self-
org-sys, comp.ai.genetic and comp.ai.fuzzy.

The Internet mailing list dealing with all aspects of
neural networks is called Neuron-Digest, to subscribe
send e-mail to neuron-request@cattell.psych.
upenn.edu.

Some articles about neural networks can be found in
Journal of Artificial Intelligence Research, (http: / /
www.cs.washington.edu / research / jair/ home.html) or
in Neural Edge Library (http://
www.clients.globalweb.co.uk / nctt / newsletter/).

A very good and complex list of on-line and some off-
line articles about all aspects of the back-propagation
algorithm is the Backpropagator's review,
http://www.cs.washington.edu/research/jair/
home.html).

The most complex set of technical reports, articles and
Ph.D. thesis can be found at the so-called Neuro-
prose (ftp://archive.cis.ohio-state.edu/pub/
neuroprose). Another large collection of neural net-
work papers and software is at the Finish University
Network (ftp:// ftp.funet.fi/ pub/ sci/ neural). It contains
the major part of the public domain software and
papers (e.g. mirror of Neuroprose). Many scientific
groups dealing with neural network problems has their
own WWW sites with downloadable technical reports,
e.g. Electronic Circuit Design Workgroup (http://
www.eeb.ele.tue.nl/ neural / reports.html), Institute for
research in Cognitive Science
(http://www.cis.upenn.edu/ ~ ires/ Abstracts.html),
UTCS (http://www.cs.utexas. edu / users / nn/ pages /
publications / publications, html), IDIAP
(http://www.idiap.ch/html/idiap- networks.html) etc.

For the updated list of shareware/freeware neural
network software look at http://www.emsl.pnl.
gov:2080/ d ocs/ cie/ neural/ systems/ shareware.html,
for the list of commercial software look at StatSci
(http://www.scitechint.com/ neural.HTM) or at

http://www.emsl.pnl.gov:2080/ docs/ cie/ neural/
systems/ software.html. Very complex list of software
is also available in FAQ. One of the best freeware
neural network simulators is the Stuttgart Neural
Network Simulator SNNS (http: / / www.informatik.uni-
stuttgart.de / ipvr / bv/ projekte/ snns/ snns.html), that
is targeted for Unix systems. MS-Windows front-end
for SNNS (http:// www.lans.ece.utexas.edu/
winsnns.html) is available too.

For experimentation with neural networks there are
available several databases, e.g. the neural-bench
Benchmark collection (http:// www.boltz.cs.cmu. edu/).
For the full list see FAQ.

You can find nice list of NN societies in the WWW at
http:// www.emsl.pnl.gov:2080/ docs/
cie/neural/societies.html and at http://
www.ieee.org:80/ nnc/research/othernnsoc.html.

There is a WWW page for Announcements of
Conferences, Workshops and Other Events on Neu-
ral Networks at IDIAP in Switzerland (http://
www.idiap.ch / html / idiap-networks.html).

9. EXAMPLE OF THE APPLICATION -
NEURAL-NETWORK PREDICTION OF
CARBON-13 NMR CHEMICAL SHIFTS OF
ALKANES

13
C NMR chemical shifts belong to the so-called local

molecular properties, where it is possible to assign
unambiguously the given property to an atom (vertex)
of structural formula (molecular graph). In order to
correlate

13
 C NMR chemical shifts with the molecular

structure we have to possess information about the
environment of the given vertex. The chosen atom
plays a role of the so-called root [146], a vertex
distinguished from other vertices of the molecular
graph. For alkanes embedding frequencies [147-149]
specify the number of appearance of smaller rooted
subtrees that are attached to the root of the given
tree (alkane), see Figs. 4 and 5. Each atom (a non-
equivalent vertex in the tree) in an alkane (tree) is
determined by 13 descriptors d = (dl, d2, ..., d13) that
are used as input activities of neural networks. The
entry dt determines the embedding frequency of the
ith rooted subtree (Fig. 4) for the given rooted tree
(the root is specified by that carbon atom of which the
chemical shift is calculated). Their number and form
are determined by our requirement to have all the
rooted trees through 5 vertices. To avoid information
redundancy, we have deleted those rooted trees,
which embedding frequencies can be exactly
determined from embedding frequencies of simpler
rooted subtrees. This means, that we consider at
most (5-carbon effects.<

http://asknpac.npac.syr.edu/
http://www.cs.washington.edu/
http://www.clients.globalweb.co.uk/
http://www.cs.washington.edu/research/jair/
http://www.eeb.ele.tue.nl/
http://www.cis.upenn.edu/
http://www.cs.utexas/
http://www.idiap.ch/html/idiap-
http://www.emsl.pnl/
http://www.scitechint.com/
http://www.emsl.pnl.gov:2080/
http://www.informatik.uni-stuttgart.de/
http://www.informatik.uni-stuttgart.de/
http://www.lans.ece.utexas.edu/
http://www.boltz.cs.cmu/
http://www.emsl.pnl.gov:2080/
http://www.ieee.org/
http://www.idiap.ch/

Swati Agrawal

w
w

w
.i

g
n

it
e

d
.i
n

10

 Introduction to Multi-Layer Feed-Forward Neural Networks

Fig. 4. List of 13 rooted subtrees that are used for the
calculation of embedding frequencies.

To C9 available in the book [150] (cf. Ref. [151]) (al-
kanes C9 are not complete) are used as objects in our
calculations. The total number of all alkanes consid-
ered in our calculations is 63, they give 326 different
chemical shifts for topologically non-equivalent posi-
tions in alkanes. This set of 326 chemical shifts is di-
vided into the training set and the test set.

The decomposition of whole set of chemical shifts into
training and test sets was carried out by making use of
the Kohonen neural network [4] with architecture
specified by 14 input neurons and 15 X 15 = 275
output neurons situated on a rectangular grid 15 X 15.

The input activities of each object (chemical shift) are
composed of 14 entries, whereby the first 13 entries
are embedding frequencies and the last, 14th entry, is
equal to the chemical shift. Details of the used Koho-
nen network are described in Dayhoff's textbook [152],
We used Kohonen network with parameters a = 0.2
(learning constant), d0 = 10 (initial size of
neighbourhood), and T = 20 000 (number of learning
steps). We have used the rectangular type of neigh-
bourhood and the output activities were determined as
Lj (city-block) distances between input activities and
the corresponding weights. After finishing the adap-
tation process, all 326 objects were clustered so that
each object activates only one output neuron on the
rectangular grid, and some output neurons are never
activated and/or some output neurons are activated by
one or more objects. This means that this decom-
position of objects through the grid of output neurons
may be considered as a clustering of objects, each
cluster, composed of one or more objects, being
specified by a single output neuron. Finally, the
training set is created so that we shift one object (with
the lowest serial index) from each cluster to the
training set and the remaining ones to the test set.
Then we get training set composed of 112 objects and
the test set composed of 214 objects.

10. CONCLUSIONS

ANNs should not be used without analysis of the
problem, because there are many alternatives to the

use of neural networks for complex approximation
problems. There are obvious cases when the use of
neural networks is quite inappropriate, e.g. when the
system is described with the set of equations, that re-
flects its physico-chemical behaviour. ANNs is a
powerful tool, but the classical methods (e.g. MLRA,
PCA, cluster analysis, pattern recognition etc.) can
sometimes provide better results in shorter time.

REFERENCES

1. W.S. McCulloch, W. Pitts, A logical calculus of
ideas immanent in nervous activity, Bull. Math.
Biophys. 5 (1943) 115-133.

2. S. Haykin, Neural Networks - A
Comprehensive Foundation, Macmillan, 1994.

3. G.M. Maggiora, D.W. Elrod, R.G. Trenary,
Computational neural networks as model-
free mapping device, J. Chem. Inf. Comp.
Sci. 32 (1992) 732-741.

4. T. Kohonen, Self-organisation and
Associative Memory, Springer Verlag, Berlin,
1988.

5. J. Zupan, J. Gasteiger, Neural Networks for
Chemists, VCH, New York, 1993.

6. J. Hertz, A. Krogh, R.G. Palmer, Introduction
to the Theory of Neural Computation,
Addison-Wesley, Reading, MA, 1991.

7. D.P. Bertsekas, J.N. Tsitsiklis, Neuro-
Dynamic Programming, Athena Scientific,
Belmont, MA, 1996.

8. A. Wieland, R. Leighton, Geometric analysis
of neural network capabilities, in: 1st IEEE
Int. Conf. on Neural Networks, Vol. 3, San
Diego, CA, 1987, p. 385.

9. W. Wu, B. Walczak, D.L. Massart, S.
Heurding, F. Erni, I.R. Last, K.A. Prebble,
Artificial neural networks in classification of
NIR spectral data: Design of the training set,
Chemom. Intell. Lab. Syst. 33 (1996) 35-46.

10. M. Smith, Neural Networks for Statistical
Modelling, Van Nostrand Reinhold, New
York, 1993.

11. S. Geman, E. Bienenstock, R. Doursat,
Neural networks and the bias/variance
dilemma, Neural Computation 4 (1992) 1-58.

12. A. Blum, Neural Networks in C
++

, Wiley,
1992.

Swati Agrawal

w
w

w
.i

gn
it

e
d

.i
n

11

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

13. K. Hornik, Approximation capabilities of multi-
layer neural networks, Neural Networks 4 (2)
(1991) 251-257.

14. K. Hornik, Some new results on neural
network approximation, Neural Networks 6
(1993) 1069-1072.

15. C.M. Bishop, Neural Networks for Pattern
Recognition, Oxford Univ. Press, Oxford,
1995.

16. V. Kurkova, Kolmogorov's theorem and
multilayer neural networks, Neural Networks 5
(3) (1992) 501-506.

17. T. Masters, Practical Neural Network Recipes
in C++, Academic Press, 1993, p. 87.

18. B.D. Ripley, Pattern Recognition and Neural
Networks, Cambridge Univ. Press, Cambridge,
1996.

19. S.M. Weiss, C.A. Kulikowski, Computer
Systems That Learn, Morgan Kaufmann,
1991.

20. M. Stone, Cross validation choice and
assessment of statistical predictions, J. Roy.
Statistical Soc. B36 (1974) 111133.

21. J.S.U. Hjorth, Computer Intensive Statistical
Methods, Chapman and Hall, London, 1994.

22. B. Efron, R.J. Tibshirani, An Introduction to the
Bootstrap, Chapman and Hall, London, 1993.

23. S. Amari, N. Murata, K.-R. Muller, M. Finke, H.
Yang, Asymptotic statistical theory of
overtraining and cross- validation, METR 95-
06, Department of Mathematical Engineering
and Information Physics, University of Tokyo,
Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan,
1995.

24. R. Andrews, J. Diedrich, A.B. Tickle, A survey
and critiques for extracting rules from trained
artificial neural networks, Internal printing of
the Neurocomputing Research centre,
Queensland University of Technology,
Brisbane, 1995.

25. J.W. Shavlik, A Framework for Combining
Symbolic and Neural Learning, CS-TR-92-
1123, November 1992, The University of
Wisconsin. Available at http: //www.cs.
wisc.edu/trs.html.

26. M.A. Franzini, Speech recognition with back
propagation, Proc. IEEE 9th Annual Conf.

Engineering in Medicine and Biology Society,
Boston, MA, vol. 9, 1987, pp. 1702-1703.

27. K. Matsuoka, J. Yi, Back-propagation based
on the logarithmic error function and
elimination of local minima, Proc. Int. Joint
Conf. on Neural Networks, Singapore, vol. 2,
1991, pp. 1117-1122.

28. S.A. Solla, E. Levin, M. Fleisher, Accelerated
learning in layered neural networks, Complex
Systems 2 (1988) 39-44.

29. H. White, Learning in artificial neural
networks: a statistical perspective, Neural
Computation 1 (1989) 425-464.

30. J.S. Bridle, Training stochastic model
recognition algorithms as networks can lead
to maximum mutual information estimation of
parameters, in: D.S.Touretzky (Ed.), Ad-
vances in Neural Information Processing
Systems, vol. 2, Morgan Kaufmann, San
Maeto, CA, 1990, pp. 211-217.

31. S.A. Solla, M.J. Holt, S. Semnani,
Convergence of back- propagation in neural
networks using a log-likelihood cost function,
Electron. Lett. 26 (1990) 1964-1965.

32. K. Matsuoka, A. van Ooyen, B. Nienhuis,
Improving the convergence of the back-
propagation algorithm, Neural Networks 5
(1992) 465-471.

33. A.S. Weigend, D.E. Rumelhart, B.A.
Hubermann, Back propagation, weight
elimination and time series prediction, in:
D.S. Touretzky, J.L. Elman, T.J. Sejnowski,
G.E. Hinton (Eds.), Connectionist Models,
Proc. 1990 Connectionist Models Summer
School, Morgan Kaufmann, San Mateo, CA,
1991, pp. 105-116.

34. J. Lee, Z. Bien, Improvement on function
approximation capability of back-propagation
neural networks, Proc. Int. Joint Conf. on
Neural Network, Singapore, vol. 2, 1991, pp.
1367-1372.

35. P.A. Shoemaker, M.J. Carlin, R.L.
Shimabukuro, Back- propagation learning
with trinary quantization of weight updates,
Neural Networks 4 (1991) 231-241.

36. T. Samad, Back-propagation improvements
based heuristic arguments, Proc. Int. Joint
Conf. on Neural Networks, Washington DC,
vol. 1, 1990, pp. 565-568.

http://www.cs/

Swati Agrawal

w
w

w
.i

g
n

it
e

d
.i
n

12

 Introduction to Multi-Layer Feed-Forward Neural Networks

37. Y. LeCun, B. Boser, J.S. Denker, D.
Henderson, R.E. Howard, W. Hubbard, L.
Jackel, Back-propagation applied to
handwritten zip code recognition, Neural
Computation 1 (1989) 541-551.

38. J. Sietsma, R.J.F. Dow, Creating artificial
neural networks that generalize, Neural
Networks 2 (1991) 67-69.

39. G. Teasuro, B. Janssens, Scaling relationships
in back-propagation learning, Complex
Systems 2 (1988) 39-44.

40. J. Higashino, B.L. de Greef, E.H. Persoon,
Numerical analysis and adaptation method for
learning rate of back propagation, Proc. Int.
Joint Conf. on Neural Networks, Washington
DC, vol. 1, 1990, pp. 627-630.

41. S.E. Fahlman, Fast-learning variations on
back propagation: an empirical study, in: D.S.
Touretzky, G.E. Hinton, T.J. Sejnowski (Eds.),
Proc. 1988 Connectionist Models Summer
School, Morgan Kaufmann, San Mateo, CA,
1989, pp. 38-51.

42. R. Battiti, T. Tecchiolli, Learning with fast,
second and no derivatives: a case study in
high energy physics, Neurocom- puting 6
(1994) 181-206.

43. S.S. Rao, Optimisation: Theory and
Applications, Ravi Acharya for Wiley Eastern,
New Delhi, 1978.

44. P.E. Gill, W. Murray, M. Wright, Practical
Optimisation, Academic Press, London, 1981.

45. C. deGroot, D. Wurtz, Plain back-propagation
and advanced optimisation algorithms: a
comparative study, Neurocom- puting 6 (1994)
153-161.

46. P.J.M. van Laarhoven, E.H.L. Aarts, Simulated
Annealing. Theory and Applications, Reidel,
Dordrecht, 1987.

47. R.H.J.M. Otten, L.P.P.P. van Ginneken,
Annealing Algorithm, Kluwer, Boston, 1989.

48. V. Kvasnieka, J. Pospfchal, Augmented
simulated annealing adaptation of feed-
forward neural networks, Neural Network
World 3 (1994) 67-80.

49. T.P. Vogl, J.K. Mangis, A.K. Rigler, W.T. Zink,
D.L. Alkon, Accelerating the convergence of
the back-propagation method, Biological
Cybernetics 59 (1988) 257-263.

50. D.V. Schreibman, E.M. Norris, Speeding up
back-propagation by gradient correlation,
Proc. Int. Joint Conf. on Neural Networks,
Washington DC, vol. 1, 1990, pp. 723736.

51. R.A. Jacobs, Increased rates of convergence
through learning rate adaptation, Neural
networks 1 (1988) 226-238.

52. T. Tollenaere, SuperSAB: fast adaptive back-
propagation with good scaling properties,
Neural Networks 3 (1990) 561-573.

53. M. Riedmiller, H. Braun, A direct adaptive
method for faster back-propagation learning:
The RPROP algorithm, Proc. IEEE Int. Conf.
on Neural Networks, San Francisco, 1993.

54. J.R. Chen, P. Mars, Stepsize variation
methods for accelerating the back-
propagation algorithm, Proc. Int. Joint Conf.
on Neural Networks, Portland, Oregon, vol.
3, 1990, pp. 601-604.

55. P.P. van der Smagt, Minimisation methods
for training feed-forward neural networks,
Neural Networks 7 (1994) 1-11.

56. E. Barnard, J.E.W. Holm, A comparative
study of optimisation techniques for back-
propagation, Neurocomputing 6 (1994) 19-
30.

57. K. Levenberg, A method for the solution of
certain problems in least squares , Quart.
Appl. Math. 2 (1944) 164-168.

58. D. Marquardt, An algorithm for least-squares
estimation of nonlinear parameters , SIAM J.
Appl. Math. 11 (1963) 431-441.

59. M.T. Hagan, M.B. Menhaj, Training
feedforward networks with the Maquardt
algorithm, IEEE Trans. Neural Networks 5
(6) (1995) 989-993.

60. W.H. Press, B.P. Flannery, S.A. Teukolsky,
W.t. Vetterling, Numerical Recipes: The art
of scientific computing, Cambridge,
Cambridge Univ. Press, 1987. Also available
on-line at http://cfatab.harvard.edu/nr/.

61. E. Polak, Computational methods in
optimisation, Academic Press, New York,
1971.

62. M.J.D. Powell, Restart procedures for the
conjugate gradient methods, Math. Prog. 12
(1977) 241-254.

http://cfatab.harvard.edu/nr/

Swati Agrawal

w
w

w
.i

gn
it

e
d

.i
n

13

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

63. R. Fletcher, C.M. Reeves, Function
minimization by conjugate gradients, Comput.
J. 7 (1964) 149-154.

64. E. Polak, G. Ribiere, Note sur la convergence
de methods de directions conjures, Revue
Francaise Information Recherche
Operationnelle 16 (1969) 35-43.

65. E. Barnard, Optimisation for training neural
nets, IEEE Trans. Neural Networks 3 (1992)
232-240.

66. M.F. Moller, A scaled conjugate gradient
algorithm for fast supervised learning, Neural
Networks 6 (1993) 525-533.

67. T.A. Andrea, H. Kalyeh, Application of neural
networks in quantitative structure-activity
relationships of dihydrofolate reductase
inhibitors, J. Med. Chem. 33 (1990) 2583-
2590.

68. D. Manallack, D.J. Livingstone, Artificial neural
networks: application and chance effects for
QSAR data analysis, Med. Chem. Res. 2
(1992) 181-190.

69. D.J. Livingstone, D.W. Salt, Regression
analysis for QSAR using neural networks,
Bioorg. Med. Chem. Let. 2 (1992) 213-218.

70. C. Borggaard, H.H. Thodberg, Optimal
minimal neural interpretation of spectra, Anal.
Chem. 64 (1992) 545-551.

71. I. Tetko, A.I. Luik, G.I. Poda, Application of
neural networks in structure-activity
relationships of a small number of molecules,
J. Med. Chem. 36 (1993) 811-814.

72. I.V. Tetko, D.J. Livingstone, A.I. Luik, Neural
network studies 1: comparison of overfitting
and overtraining, J. Chem. Inf. Comp. Sci. 35
(1995) 826-833.

73. A.J. Miller, Subset selection in regression,
Monographs on Statistics and Applied
Probability, vol. 40, Chapmann and Hall,
London, 1990.

74. H. Akaike, A new look at statistical model
identification, IEEE Trans. Automatic Control
19 (1974) 716-722.

75. H. Lohninger, Feature selection using growing
neural networks: the recognition of quinoline
derivatives from mass spectral data, in: D.
Ziessow (Ed.), Software Development in
Chemistry 7, Proc. 7th CIC Workshop,

Gosen/Berlin, 1992, GDCh, Frankfurt, 1993, p.
25.

76. D. Rogers, A.J. Hopfinger, Application of
genetic function approximation to quantitative
structure-activity relationships and quantitative
structure-property relationships, J. Chem. Inf.
Comput. Sci. 34 (1994) 854-866.

77. H. Kubinyi, Variable selection in QSAR
studies-1. An evolutionary algorithm, Quant.
Struc. Act. Relat. 13 (1994) 285-294.

78. B.T. Luke, Evolutionary programming applied
to the development of quantitative structure-
activity and quantitative structure-property
relationships, J. Chem. Inf. Comput. Sci. 34
(1994) 1279-1287.

79. J.H. Wikel, E.R. Dow, The use of neural
networks for variable selection in QSAR,
Bioorg. Med. Chem. Let. 3 (1993) 645-651.

80. I.V. Tetko, A.E.P. Villa, D.J. Livingstone,
Neural network studies 2: variable selection,
J. Chem. Inf. Comp. Sci. 36 (1996) 794-803.

81. J. Leonard, K.A. Kramer, Improvement of
back-propagation algorithm for training neural
networks, Comput. Chem. Eng. 14 (1990)
337-341.

82. Ch. Klawun, Ch.L. Wilkins, A novel algorithm
for local minimum escape in back-
propagation neural networks: application to
the interpretation of matrix isolation infrared
spectra, J. Chem. Inf. Comput. Sci. 34 (1994)
984-993.

83. H. Lohninger, Evaluation of neural networks
based on radial basis function and their
application to the prediction of boiling points
from structural parameter, J. Chem. Inf.
Comp. Sci. 33 (1993) 736-744.

84. J. Tetteh, E. Metcalfe, S.L. Howells,
Optimisation of radial basis and back-
propagation neural networks for modelling
auto-ignition temperature by quantitative
structure-property relationship, Chemom. Int.
Lab. Syst 32 (1996) 177-191.

85. A.U. Radomski, P. Jan, H. van Halbeek, B.
Meyer, Neural network-based recognition of
oligosaccharide 'H-NMR spectra, Nat. Struct.
Biol. 1-4 (1994) 217-218.

86. U. Hare, J. Brian, J.H. Prestegard,
Application of neural networks to automated

Swati Agrawal

w
w

w
.i

g
n

it
e

d
.i
n

14

 Introduction to Multi-Layer Feed-Forward Neural Networks

assignment of NMR spectra of proteins, J.
Biomol. NMR 4 (1) (1994) 35-46.

87. A.U.R. Zamora, J.L. Navarro, F.J. Hidalgo,
Cross-peak classification in two-dimensional
nuclear magnetic resonance, J. Am. Oil Chem.
Soc. 71 (1994) 361-364.

88. A.U. Corne, A. Simon, J. Fisher, A.P. Johnson,
W.R. Newell, Cross-peak classification in two-
dimensional nuclear magnetic resonance
spectra using a two-layer neural network,
Anal. Chim. Acta 278 (1993) 149-158.

89. Ch. Ro, R.W. Linton, New directions in
microprobe mass spectrometry: molecular,
microanalysis using neural networks,
Microbeam Anal. (Deerfield Beach, FL) 1
(1992) 75-87.

90. R. Goodacre, A. Karim, A.M. Kaderbhai, D.B.
Kell, Rapid and quantitative analysis of
recombinant protein expression using
pyrolysis mass spectrometry and artificial
neural networks: application to mammalian
cytochrome b5 in Escherichia coli, B. J.
Biotechnol. 34 (1994) 185-193.

91. R. Goodacre, M.J. Neal, D.B. Kell, Rapid and
quantitative analysis of the pyrolysis mass
spectra of complex binary and tertiary mixtures
using multivariate calibration and artificial
neural networks, Anal. Chem. 66 (1994) 1070-
1085.

92. J. Gasteiger, X. Li, V. Simon, M. Novic, J.
Zupan, Neural nets for mass and vibrational
spectra, J. Mol. Struct. 292 (1993) 141-159.

93. W. Werther, H. Lohninger, F. Stand, K.
Varmuza, Classification of mass spectra. A
comparison of yes/no classification methods
for the recognition of simple structural proper-
ties, Chemom. Intell. Lab. Syst. 22 (1994) 63-
76.

94. T. Visser, H.J. Luinge, J.H. van der Maas,
Recognition of visual characteristics of infrared
spectra by artificial neural networks and partial
least squares regression, Anal. Chim. Acta
296 (1994) 141-154.

95. M.K. Alam, S.L. Stanton, G.A. Hebner, Near-
infrared spectroscopy and neural networks for
resin identification, Spectroscopy, Eugene,
Oregon, 9 (1994) 30, 32-34, 36-38, 40.

96. D.A. Powell, V. Turula, J.A. de Haseth, H. van
Halbeek, B. Meyer, Sulfate detection in
glycoprotein-derived oligosaccharides by
artificial neural network analysis of Fourier-
transform infrared spectra, Anal. Biochem. 220
(1994) 2027.

97. K. Tanabe, H. Uesaka, Neural network system
for the identification of infrared spectra, Appl.
Spectrosc. 46 (1992) 807-810.

98. M. Meyer, K. Meyer, H. Hobert, Neural
networks for interpretation of infrared spectra
using extremely reduced spectral data, Anal.
Chim. Acta 282 (1993) 407-415.

99. J.M. Andrews, S.H. Lieberman, Neural
network approach to qualitative identification
of fuels and oils from laser induced
fluorescence spectra. Anal. Chim. Acta 285
(1994) 237-246.

100. B. Walczak, E. Bauer-Wolf, W. Wegscheider,
A neuro-fuzzy system for X-ray spectra
interpretation, Mikrochim. Acta 113 (1994)
153-169.

101. Z. Boger, Z. Karpas, Application of neural
networks for interpretation of ion mobility and
X-ray fluorescence spectra, Anal. Chim. Acta
292 (1994) 243-251.

102. A. Bos, M. Bos, W.E. van der Linden,
Artificial neural networks as a multivariate
calibration tool: modeling the iron-chromium-
nickel system in X-ray fluorescence spec-
troscopy, Anal. Chim. Acta 277 (1993) 289-
295.

103. S. Iwasaki, H. Fukuda, M. Kitamura, High-
speed analysis technique for gamma-ray
and X-ray spectra using an asso- dative
neural network, Int. J. PIXE, Volume Date 3
(1993) 267-273.

104. S. Iwasaki, H. Fukuda, M. Kitamura,
Application of linear associative neural
network to thallium-activated sodium iodide
gamma-ray spectrum analysis, KEK Proc.
1993, 93-98, 73-83.

105. M.N. Souza, C. Gatts, M.A. Figueira,
Application of the artificial neural network
approach to the recognition of specific
patterns in Auger electron spectroscopy,
Surf. Interf. Anal. 20 (1993) 1047-1050.

106. H.G. Schulze, M.W. Blades, A.V. Bree, B.B.
Gorzalka, L.S. Greek, R.F.B. Turner,
Characteristics of back-propagation neural
networks employed in the identification of
neurotransmitter Raman spectra, Appl.
Spectrosc. 48 (1994) 5057.

107. M.J. Lerner, T. Lu, R. Gajewski, K.R. Kyle,
M.S. Angel, Real time identification of VOCs
in complex mixtures by holographic optical
neural networking (HONN), Proc. Elec-

Swati Agrawal

w
w

w
.i

gn
it

e
d

.i
n

15

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

trochem. Soc., 1993, pp. 93-97; Proc. Symp.
on Chemical Sensors II, 1993, pp. 621-624.

108. X. Ni, Y. Hsia, Artificial neural network in
Mossbauer spectroscopy, Nucl. Sci. Tech. 5
(1994) 162-165.

109. W.L. Morgan, J.T. Larsen, W.H. Goldstein,
The use of artificial neural networks in plasma
spectroscopy, J. Quant. Spectrosc. Radiat.
Transfer 51 (1994) 247-253.

110. N. Sreerama, R.W. Woody, Protein secondary
structure from circular dichroism spectroscopy.
Combining variable selection principle and
cluster analysis with neural network, ridge
regression and self-consistent methods, J.
Mol. Biol. 242 (1994) 497-507.

111. B. Dalmas, G.J. Hunter, W.H. Bannister,
Prediction of protein secondary structure from
circular dichroism spectra using artificial neural
network techniques, Biochem. Mol. Biol. Int.
34 (1994) 17-26.

112. S.L. Thaler, Neural net predicted Raman
spectra of the graphite to diamond transition,
Proc. Electrochem. Soc., 1993, pp. 93-117;
Proc. 3rd Int. Symp. on Diamond Materials,
1993, pp. 773-778.

113. D.L. Clouser, P.C. Jurs, Simulation of
l3
C

nuclear magnetic resonance spectra of
tetrahydropyrans using regression analysis
and neural networks. Anal. Chim. Acta 295
(1994) 221-231.

