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Abstract - Basic definitions concerning the multi-layer feed-forward neural networks are given. The back-

propagation training algorithm is explained. Partial derivatives of the objective function with respect to 

the weight and threshold coefficients are derived. These derivatives are valuable for an adaptation 

process of the considered neural network. Training and generalisation of multi-layer feed-forward neural 

networks are discussed. Improvements of the standard back-propagation algorithm are reviewed. 

Example of the use of multi-layer feed-forward neural networks for prediction of carbon-13 NMR chemical 

shifts of alkanes is given. Further applications of neural networks in chemistry are reviewed. Advantages 

and disadvantages of multilayer feed-forward neural networks are discussed. 

---------------------------♦----------------------------- 
 

1. INTRODUCTION  

Artificial neural networks (ANNs) [1] are networks of 
simple processing elements (called 'neurons') 
operating on their local data and communicating with 
other elements. The design of ANNs was motivated by 
the structure of a real brain, but the processing 
elements and the architectures used in ANN have 
gone far from their biological inspiration. 

There exist many types of neural networks, e.g. see 
[2], but the basic principles are very similar. Each 
neuron in the network is able to receive input signals, 
to process them and to send an output signal. Each 
neuron is connected at least with one neuron, and 
each connection is evaluated by a real number, called 
the weight coefficient, that reflects the degree of 
importance of the given connection in the neural 
network. 

In principle, neural network has the power of a 
universal approximator, i.e. it can realise an arbitrary 
mapping of one vector space onto another vector 
space [3]. The main advantage of neural networks is 
the fact, that they are able to use some a priori un-
known information hidden in data (but they are not 
able to extract it). Process of 'capturing' the unknown 
information is called 'learning of neural network' or 
'training of neural network'. In mathematical formalism 
to learn means to adjust the weight coefficients in such 
a way that some conditions are fulfilled. 

There exist two main types of training process: 
supervised and unsupervised training. Supervised 
training (e.g. multi-layer feed-forward (MLF) neural 
network) means, that neural network knows the de-
sired output and adjusting of weight coefficients is 

done in such way, that the calculated and desired 
outputs are as close as possible. Unsupervised train-
ing (e.g. Kohonen network [4]) means, that the de-
sired output is not known, the system is provided with 
a group of facts (patterns) and then left to itself to 
settle down (or not) to a stable state in some number 
of iterations. 

2. MULTI-LAYER FEED-FORWARD (MLF) 
NEURAL NETWORKS 

MLF neural networks, trained with a back-propa-
gation learning algorithm, are the most popular neural 
networks. They are applied to a wide variety of 
chemistry related problems [5]. 
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Fig. 1. Typical feed-forward neural network composed 
of three layers. 

A MLF neural network consists of neurons, that are 
ordered into layers (Fig. 1). The first layer is called the 
input layer, the last layer is called the out- mation in 
Eq. (2) is carried out over all neurons j transferring the 
signal to the ith neuron). The threshold coefficient can 
be understood as a weight coefficient of the 
connection with formally added neuron j, where Xj = 1 
(so-called bias). 

For the transfer function it holds that 

/(f) = 1 + exp( — £)   (3) 

The supervised adaptation process varies the 
threshold coefficients and weight coefficients a)^ to 
minimise the sum of the squared differences between 
the computed and required output values. This is 
accomplished by minimisation of the objective function 
E: 

E-LH'o-to)
1
 4)put layer, and the layers between 

are hidden layers. For the formal description of the 
neurons we can use the so-called mapping function r, 
that assigns for each neuron i a subset r(i) c V which 
consists of all ancestors of the given neuron. A subset 
V than consists of all predecessors of the given neuron 
i. Each neuron in a particular layer is connected with 
all neurons in the next layer. The connection between 
the ith and y'th neuron is characterised by the weight 
coefficient and the ith neuron by the threshold 
coefficient (Fig. 2).  

3. BACK-PROPAGATION TRAINING 
ALGORITHM 

In back-propagation algorithm the steepest-descent 
minimisation method is used. For adjustment of the 
weight and threshold coefficients it holds that: 

where A is the rate of learning (A > 0). The key 
problem is calculation of the derivatives dE/dco^ a 
dE/dty. Calculation goes through next steps: First step 
because the output error propagates from the output 
layer through the hidden layers to the input layer. 

Based on the above given approach the derivatives of 
the objective function for the output layer and then for 
the hidden layers can be recurrently calculated. This 
algorithm is called the back-propagation 

4. TRAINING AND GENERALISATION 

The MLF neural network operates in two modes: 
training and prediction mode. For the training of the 
MLF neural network and for the prediction using the 
MLF neural network we need two data sets, the 
training set and the set that we want to predict (test 
set). 

The training mode begins with arbitrary values of the 
weights - they might be random numbers - and 
proceeds iteratively. Each iteration of the complete 
training set is called an epoch. In each epoch the net-
work adjusts the weights in the direction that reduces 
the error (see back-propagation algorithm). As the it-
erative process of incremental adjustment continues, 
the weights gradually converge to the locally optimal 
set of values. Many epochs are usually required before 
training is completed. 

For a given training set, back-propagation learning 
may proceed in one of two basic ways: pattern mode 
and batch mode. In the pattern mode of back- 
propagation learning, weight updating is performed 
after the presentation of each training pattern. In the 
batch mode of back-propagation learning, weight up-
dating is performed after the presentation of all the 
training examples (i.e. after the whole epoch). From 
an 'on-line' point of view, the pattern mode is pre-
ferred over the batch mode, because it requires less 
local storage for each synaptic connection. More-
over, given that the patterns are presented to the 
network in a random manner, the use of pattern-by-
pattern updating of weights makes the search in 
weight space stochastic, which makes it less likely 
for the back-propagation algorithm to be trapped in a 
local minimum. On the other hand, the use of batch 
mode of training provides a more accurate estimate 
of the gradient vector. Pattern mode is necessary to 
use for example in on-line process control, because 
there are not all of training patterns available in the 
given time. In the final analysis the relative 
effectiveness of the two training modes depends on 
the solved problem [6,7], In prediction mode, 
information flows forward through the network, from 
inputs to outputs. The net- work processes one 
example at a time, producing an estimate of the 
output value(s) based on the input values. The 
resulting error is used as an estimate of the quality of 
prediction of the trained network. 
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In back-propagation learning, we usually start with a 
training set and use the back-propagation algorithm to 
compute the synaptic weights of the network. The 
hope is that the neural network so designed will gen-
eralise. A network is said to generalise well when the 
input-output relationship computed by network is 
correct (or nearly correct) for input/output patterns 
never used in training the network. Generalisation is 
not a mystical property of neural networks, but it can 
be compared to the effect of a good non-linear inter-
polation of the input data [8]. Principle of generalisa-
tion is shown in Fig. 3a. When the learning process is 
repeated too many iterations (i.e. the neural network is 
overtrained or overfitted, between over- trainig and 
overfitting is no difference), the network may memorise 
the training data and therefore be less able to 
generalise between similar input-output patterns. The 
network gives nearly perfect results for examples from 
the training set, but fails for examples from the test set. 
Overfitting can be compared to improper choose of the 
degree of polynom in the polynomial regression (Fig. 
3b). Severe overfitting can occur with noisy data, even 
when there are many more training cases than 
weights. 

The basic condition for good generalisation is suf-
ficiently large set of the training cases. This training set 
must be in the same time representative subset of the 
set of all cases that you want to generalise to. The 
importance of this condition is related to the fact that 
there are two different types of generalisation: inter-
polation and extrapolation. Interpolation applies to 
cases that are more or less surrounded by nearby 
training cases; everything else is extrapolation. In 
particular, cases that are outside the range of the 
training data require extrapolation. Interpolation can 
often be done reliably, but extrapolation is notoriously 
unreliable. Hence it is important to have sufficient 
training data to avoid the need for extrapolation. 
Methods for selecting good training sets arise from 
experimental design [9]. 

For an elementary discussion of overfitting, see [10]. 
For a more rigorous approach, see the article by 
Geman et al. [11]. 

Given a fixed amount of training data, there are some 
effective approaches to avoiding overfitting, and hence 
getting good generalisation: 

4.1. MODEL SELECTION 

The crucial question in the model selection is 'How 
many hidden units should I use?'. Some books and 
articles offer 'rales of thumb' for choosing a topology, 
for example the size of the hidden layer to be 
somewhere between the input layer size and the 
output layer size [12] or some other rules, but such 
rules are total nonsense. There is no way to determine 
a good network topology just from the number of 
inputs and outputs. It depends critically on the number 
of training cases, the amount of noise, and the 
complexity of the function or classification you are 
trying to learn. An intelligent choice of the number of 
hidden units depends on whether you are using early 
stopping (see later) or some other form of regu- 
larisation (see weight decay). If not, you must simply 
try many networks with different numbers of hidden 
units, estimate the generalisation error for each one, 
and choose the network with the minimum estimated 
generalisation error. 

Other problem in model selection is how many hidden 
layers use. In multi-layer feed forward neural network 
with any of continuous non-linear hidden- layer 
activation functions, one hidden layer with an 
arbitrarily large number of units suffices for the 'uni-
versal approximation' property [13-15]. Anyway, there 
is no theoretical reason to use more than two hidden 
layers. In [16] was given a constructive proof about 
the limits (large, but limits nonetheless) on the 
number of hidden neurons in two-hidden neural net-
works. In practise, we need two hidden layers for the 
learning of the function, that is mostly continuous, but 
has a few discontinuities [17]. Unfortunately, using 
two hidden layers exacerbates the problem of local 
minima, and it is important to use lots of random ini-
tialisations or other methods for global optimisation. 
Other problem is, that the additional hidden layer 
makes the gradient more unstable, i.e. that training 
process slows dramatically. It is strongly recom-
mended use one hidden layer and then, if using a 
large number of hidden neurons does not solve the 
problem, it may be worth trying the second hidden 
layer. 

4.2. WEIGHT DECAY 

Weight decay adds a penalty term to the error 
function. The usual penalty is the sum of squared 
weights times a decay constant. In a linear model, 
this form of weight decay is equivalent to ridge 
regression. Weight decay is a subset of regularisation 
methods. The penalty term in weight decay, by defi-
nition, penalises large weights. Other regularisation 
methods may involve not only the weights but various 
derivatives of the output function [15]. The weight 
decay penalty term causes the weights to converge 
to smaller absolute values than they otherwise would. 
Large weights can hurt generalisation in two different 
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ways. Excessively large weights leading to hidden 
units can cause the output function to be too rough, 
possibly with near discontinuities. Excessively large 
weights leading to output units can cause wild outputs 
far beyond the range of the data if the output activation 
function is not bounded to the same range as the data. 
The main risk with large weights is that the non-linear 
node outputs could be in one of the flat parts of the 
transfer function, where the derivative is zero. In such 
case the learning is irreversibily stoped. This is why 
Fahlman [41] proposed to use the modification /(£)(1 -
/(£)) + 0-1 instead of /( £ )(1 -/(£)) (see p. 17). The 
offset term allows the continuation of the learning even 
with large weights. To put it another way, large weights 
can cause excessive variance of the output [11], For 
discussion of weight decay see for example [18]. 

4.3. EARLY STOPPING 

Early stopping is the most commonly used method for 
avoiding overfitting. The principle of early stopping is 
to divide data into two sets, training and validation, and 
compute the validation error periodically during 
training. Training is stopped when the validation error 
rate starts to go up. It is important to realise that the 
validation error is not a good estimate of the 
generalisation error. One method for getting an 
estimate of the generalisation error is to run the net on 
a third set of data, the test set, that is not used at all 
during the training process [19]. The disadvantage of 
split-sample validation is that it reduces the amount of 
data available for both training and validation. 

Other possibility how to get an estimate of the 
generalisation is to use the so-called cross-validation 
[20]. Cross-validation is an improvement on split- 
sample validation that allows you to use all of the data 
for training. In &-fold cross-validation, you divide the 
data into k subsets of equal size. You train the net k 
times, each time leaving out one of the subsets from 
training, but using only the omitted subset to compute 
whatever error criterion interests you. If k equals the 
sample size, this is called leave-one-out cross- 
validation. While various people have suggested that 
cross-validation be applied to early stopping, the 
proper way of doing that is not obvious. The disad-
vantage of cross-validation is that you have to retrain 
the net many times. But in the case of MLF neural 
networks the variability between the results obtained 
on different trials is often caused with the fact, that the 
learning was ended up in many different local minima. 
Therefore the cross-validation method is more suitable 
for neural networks without the danger to fall into local 
minima (e.g. radial basis function, RBF, neural 
networks [83]). There exist a method similar to the 
cross-validation, the so-called bootstrapping [21,22]. 
Bootstrapping seems to work better than cross-
validation in many cases. 

Early stopping has its advantages (it is fast, it requires 
only one major decision by the user: what proportion of 
validation cases to use) but also some disadvantages 
(how many patterns are used for training and for 

validation set [23], how to split data into training and 
test set, how to know that validation error really goes 
up). 

5. ADVANTAGES AND DISADVANTAGES OF 
MLF NEURAL NETWORKS 

The application of MLF neural networks offers the 
following useful properties and capabilities: 

1. Learning. ANNs are able to adapt without as-
sistance of the user. 

2. Nonlinearity. A neuron is a non-linear device. 
Consequently, a neural network is itself non-
linear. Nonlinearity is very important property, 
particularly, if the relationship between input 
and output is inherently non-linear. 

3. Input-output mapping. In supervised training, 
each example consists of a unique input 
signal and the corresponding desired 
response. An example picked from the 
training set is presented to the network, and 
the weight coefficients are modified so as to 
minimise the difference between the desired 
output and the actual response of the 
network. The training of the network is 
repeated for many examples in the training 
set until the network reaches the stable 
state. Thus the network learns from the 
examples by constructing an input-output 
mapping for the problem. 

4. Robustness. MLF neural networks are very 
robust, i.e. their performance degrades 
gracefully in the presence of increasing 
amounts of noise (contrary e.g. to PLS). 

However, there are some problems and disadvan-
tages of ANNs too. For some problems approxima-
tion via sigmoidal functions ANNs are slowly con-
verging - a reflection of the fact that no physical in-
sight is used in the construction of the approximating 
mapping of parameters on the result. The big prob-
lem is the fact, that ANNs cannot explain their pre-
diction, the processes taking place during the 
training of a network are not well interpretable and 
this area is still under development [24,25]. The 
number of weights in an ANN is usually quite large 
and time for training the ANN is too high. 

6. IMPROVEMENTS OF BACK-
PROPAGATION ALGORITHM 

The main difficulty of standard back-propagation 
algorithm, as it was described earlier, is its slow con-
vergence, which is a typical problem for simple gra-
dient descent methods. As a result, a large number 
of modifications based on heuristic arguments have 
been proposed to improve the performance of 
standard back-propagation. From the point of view of 
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optimisation theory, the difference between the desired 
output and the actual output of an MLF neural network 
produces an error value which can be expressed as a 
function of the network weights. Training the network 
becomes an optimisation problem to minimise the error 
function, which may also be considered an objective or 
cost function. There are two possibilities to modify 
convergence behaviour, first to modify the objective 
function and second to modify the procedure by which 
the objective function is optimised. In a MLF neural 
network, the units (and therefore the weights) can be 
distinguished by their connectivity, for example 
whether they are in the output or the hidden layer. This 
gives rise to a third family of possible modifications, 
differential scaling. 

6.1. MODIFICATIONS TO THE OBJECTIVE 
FUNCTION AND DIFFERENTIAL SCALING 

Differential scaling strategies and modifications to the 
objective function of standard back-propagation are 
usually suggested by heuristic arguments. Modi-
fications to the objective function include the use of 
different error metrics and output or transfer functions. 

Several logarithmic metrics have been proposed as an 
alternative to the quadratic error of standard back-
propagation. For a speech recognition problem, 
Franzini [26] reported a reduction of 50% in learning 
time using (12) compared to quadratic error ( p is the 
number of patterns, o is the number of output 
neurons). The most frequently used alternative error 
metrics are motivated by information theoretic learning 
paradigms [27,28], A commonly used form, often 
referred to as the cross-entropy function, is k (13) 

Training a network to minimise the cross-entropy 
objective function can be interpreted as minimising the 
Kullback-Liebler information distance [29] or 
maximising the mutual information [30]. Faster learning 
has frequently been reported for information theoretic 
error metrics compared to the quadratic error [31,32]. 
Learning with logarithmic error metrics was also less 
prone to get stuck in a local minima [31,32]. 

The sigmoid logistic function used by standard back-
propagation algorithm can be generalised to In 
standard back-propagation K = D = 1 and L 0. The 
parameter D (sharpness or slope) of the sig- moidal 
transfer function can be absorbed into weights without 
loss of generality [33] and it is therefore set to one in 
most treatments. Lee and Bien [34] found that a 
network was able to more closely approximate a 
complex non-linear function when the back-propa-
gation algorithm included learning the parameters K, D 
and L as well as weights. A bipolar sigmoid function 
(tanh) with asymptotic bounds at — 1 and +1 is 
frequently used to increase the convergence speed. 
Other considerations have led to the use of different 
functions [35] or approximations [36]. 

Scaling the learning rate of a unit by its connectivity 
leads to units in different layers having different values 
of learning rate. The simplest version, dividing learning 
rate by the fan-in (the fan-in of a unit is the number of 
input connections it has with units in the preceding 
layer), is frequently used [37,38], 

Other scaling methods with higher order dependence 
to fan-in or involving the number of connections be-
tween a layer and both its preceding and succeeding 
layers have also been proposed to improve conver-
gence [39,40], Samad [36] replaced the derivative of 
the logistic function /'(£)=/UX 1 -/(f)) for the output unit 
by its maximum value of 0.25 as well as dividing the 
backpropagated error by the fan-out (the fan-out of 
the unit is the number of output connections it has to 
units in the succeeding layer) of the source unit. 
Fahlman [41] found that /(£)(! -/(£)) + 0.1 worked 
better than either /(£)(! -/(£)) or its total removal from 
the error formulae. 

6.2. MODIFICATIONS TO THE OPTIMISATION 
ALGORITHM 

Optimisation procedures can be broadly classified 
into zero-order methods (more often referred to as 
minimisation without evaluating derivatives) which 
make use of function evaluations only, first order 
methods which make additional use of the gradient 
vector (first partial derivatives) and second order 
methods that make additional use of the Hessian 
(matrix of second partial derivatives) or its inverse. In 
general, higher order methods converge in fewer iter-
ations and more accurately than lower order methods 
because of the extra information they employ but they 
require more computation per iteration. 

Minimisation using only function evaluation is a little 
problematic, because these methods do not scale 
well to problems having in excess of about 100 pa-
rameters (weights). However Battiti and Tecchiolli 
(42) employed two variants of the adaptive random 
search algorithm (usually referred as random walk 
(43) and reported similar results both in speed and 
generalisation to back-propagation with adaptive 
stepsize. The strategy in random walk is to fix a step 
size and attempt to take a step in any random direc-
tion from the current position. If the error decreases, 
the step is taken or else another direction is tried. If 
after a certain number of attempts a step cannot be 
taken, the stepsize is reduced and another round of 
attempts is tried. The algorithm terminates when a 
step cannot be taken without reducing the stepsize 
below a threshold value. The main disadvantage of 
random walk is that its success depends upon a care-
ful choice of many tuning parameters. Another algo-
rithm using only function evaluations is the polytope, 
in which the network weights form the vertices of a 
polytope [44]. The polytope algorithm is slow but is 
able to reduce the result of objective function to a 
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lower value than standard back-propagation [45]. In 
the last years also some stochastic minimisation al-
gorithms, as e.g. simulated annealing [46,47], were 
tried for adjusting the weight coefficients [48]. The 
disadvantage of these algorithms is their slowness, if 
their parameters are set so, that algorithms should 
converge into global minima of the objective function. 
With faster learning they tend to fall into deep narrow 
local minima, with results similar to overfit- ting. In 
practice they are therefore usually let run for a short 
time, and the resulting weights are used as initial 
parameters for backpropagation. 

Classical steepest descent algorithm without the 
momentum is reported [42] to be very slow to con-
verge because it oscillates from side to side across the 
ravine. The addition of a momentum term can help 
overcome this problem because the step direction is 
no longer steepest descent but modified by the previ-
ous direction. 

In effect, momentum utilises second order information 
but requires only one step memory and uses only local 
information. In order to overcome the poor conver-
gence properties of standard back-propagation, nu-
merous attempts to adapt learning rate and momen-
tum have been reported. Vogl et al. [49] adapted both 
learning step and momentum according to the change 
in error on the last step or iteration. Another adaptive 
strategy is to modify the learning parameters accord-
ing to changes in step direction as opposed to 
changes in the error value. A measure of the change 
in step direction is gradient correlation or the angle 
between the gradient vectors VEn and VEn _,. The 
learning rules have several versions [26,50], Like 
standard back-propagation the above adaptive 
algorithms have one value of learning term for each 
weight in the network. Another option is to have an 
adaptive learning rate for each weight in the network. 
Jacobs [51] proposed four heuristics to achieve faster 
rates of convergence. A more parsimonious strategy, 
called SuperSAB [52], learned three times faster than 
standard back-propagation. Other two methods that 
are effective are Quickprop [43] and RPROP [53]. 
Chen and Mars [54] report an adaptive strategy which 
can be implemented in pattern mode learning and 
which incorporates the value of the error change 
between iterations directly into the scaling of learning 
rate. 

Newton's method for optimisation uses Hessian matrix 
of second partial derivatives to compute step length 
and direction. For small scale problems where the 
second derivatives are easily calculated the method is 
extremely efficient but it does not scale well to larger 
problems because not only the second partial 
derivatives have to be calculated at each iteration but 
the Hessian must also be inverted. A way how to avoid 
this problem is to compute an approximation to the 
Hessian or its inverse iteratively. Such methods are 
described as quasi-Newton or variable metric. There 
are two frequently used versions of quasi-Newton: the 
Davidson-Fletcher-Powell (DFP) algorithm and the 

Broydon-Fletcher-Goldfarb- Shanno (BFGS) algorithm. 
In practise, van der Smagt (54) found DFP to converge 
to a minimum in only one third of 10000 trials. In a 
comparison study, Barnard (55) found the BFGS 
algorithm to be similar in average performance to 
conjugate gradient. In a function estimation problem 
[45], BFGS was able to reduce the error to a lower 
value than conjugate gradient, standard back-
propagation and a polytope algorithm without 
derivatives. Only the Levenberg-Marquardt method 
[57-59] reduced the error to a lower value than BFGS. 
The main disadvantage of these methods is that 
storage space of Hessian matrix is proportional to the 
squarednumber of weights of the network. 

An alternative second-order minimisation technique is 
conjugate gradient optimisation [60-62], This algorithm 
restricts each step direction to be conjugate to all 
previous step directions. This restriction simplifies 
the computation greatly because it is no longer 
necessary to store or calculate the Hessian or its 
inverse. There exist two main versions of conjugate 
gradients: Fletcher-Reeves version [63] and Po- lak-
Ribiere version [64], The later version is said to be 
faster and more accurate because the former makes 
more simplifying assumptions. Performance compar- 
ison of standard back-propagation and traditional 
conjugate gradients seems to be task dependent. 
For example, according to [55] Fletcher-Reeves 
conjugate gradients were not as good as standard 
back- propagation on the XOR task but better than 
standard back-propagation on two function 
estimation tasks. Another point of comparison 
between algorithms is their ability to reduce error on 
learning the training set. De Groot and Wurtz [45] 
report that conjugate gradients were able to reduce 
error on a function estimation problem some 1000 
times than standard back-propagation in 10 s of CPU 
time. Comparing conjugate gradients and standard 
back-propagation without momentum on three 
different classification tasks, method of conjugate 
gradients was able to reduce the error more rapidly 
and to a lower value than back-propagation for the 
given number of iterations [65]. Since most of the 
computational burden in conjugate gradients 
algorithms involves the line search, it would be an 
advantage to avoid line searches by calculating the 
stepsize analytically. Moller [66] has introduced an 
algorithm, which did this, making use of gradient 
difference information. 

7. APPLICATIONS OF NEURAL NETWORKS 
IN CHEMISTRY 

Interests in applications of neural networks in 
chemistry have grown rapidly since 1986. The num-
ber of articles concerning applications of neural net-
works in chemistry has an exponentially increasing 
tendency ([5], p. 161). In this part some papers deal-
ing with the use of back-propagation MLF neural 
networks in chemistry will be reviewed. Such papers 
cover a broad spectrum of tasks, e.g. theoretical as-
pects of use of the neural networks, various 
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problems in spectroscopy including calibration, study 
of chemical sensors applications, QSAR studies, 
proteins folding, process control in chemical industry, 
etc. 

7.1. THEORETICAL ASPECTS OF THE USE OF 
BACK-PROPAGATION MLF NEURAL 
NETWORKS 

Some theoretical aspects of neural networks were 
discussed in chemical literature. Tendency of MLF 
ANN to 'memorise' data (i.e. the predictive ability of 
network is substantially lowered, if the number of 
neurons in hidden layer is increased - parabolic de-
pendence) is discussed in [67], The network described 
in this article was characterised by a parameter p, that 
is the ratio of the number of data points in a learning 
set to the number of connections (i.e., the number of 
ANN internal degrees of freedom). This parameter was 
analysed also in [68,69]). In several other articles 
some attention was devoted to analysis of the ANN 
training. The mean square error MSE is used as a 
criterion of network training. 

(# of compds. X # of out units) 

While the MSE for a learning set decreases with time 
of learning, predictive ability of the network has 
parabolic dependence. It is optimal to stop net training 
before complete convergence has occurred (the so-
called 'early stopping') [70]. In [71] were shown 
benefits of statistical averaging of network prognosis. 
The problem of overfitting and the importance of cross-
validation were studied in [72], Some methods of the 
design of training and test set (i.e. methods raised 
from experimental design) were discussed in [9]. 
Together with the design of training and test set stands 
in the forefront of interest also a problem which 
variables to use as input into the neural networks 
('feature selection'). For the determining the best 
subset of a set containing n variables there exist 
several possibilities: 

• A complete analysis of all subsets. This analy-
sis is possible only for small number of 
descriptors. It was reported only for linear 
regression analysis, not for the neural 
networks. 

• A heuristic stepwise regression analysis. This 
type of methods includes forward, backward 
and Efroymson's forward stepwise regression 
based on the value of the F-test. Such 
heuristic approaches are widely used in 
regression analysis [73], Another possibility is 
to use a stepwise model selection based on 
the Akaike information criterion [74], Similar 
approaches were also described as methods 
for feature selection for neural networks [75]. 

• A genetic algorithm, evolutionary program-
ming. Such methods were not used for neural 
networks because of their high computational 
demands. Application of these techniques for 
linear regression analysis was reported [76-
78]. 

• Direct estimations (pruning methods). These 
techniques are most widely used by the ANN 
researchers. An evaluation of a variable by 
such methods is done by introducing a 
sensitivity term for variable. Selection of 
variables by such methods in QSAR studies 
was pioneered by Wikel and Dow [79]. Sev-
eral pruning methods were used and 
compared in [80], 

Some work was also done in the field of improvement 
of the standard back-propagation algorithm, e.g. by 
use of the conjugate gradient algorithm [81] or the 
Flashcard Algorithm [82], that is reported to be able 
to avoid local minima. Other possibility to avoid local 
minima is to use another neural network architecture. 
Among the most promising belongs the radial basis 
neural (RBF) neural network [83], RBF and MLF ANN 
were compared in [84]. 

7.2 SPECTROSCOPY 

The problem of establishing correlation between 
different types of spectra (infrared, NMR, UV, VIS, 
etc.) and the chemical structure of the corresponding 
compound is so crucial, that the back-propagation 
neural networks approach was applied in many spec-
troscopic problems. The main two directions in the 
use of neural networks for spectroscopy related prob-
lems are the evaluation of the given spectrum and the 
simulation of the spectrum of the given compound. 
Almost all existing spectra have been used as inputs 
to the neural networks (i.e. evaluation): NMR spectra 
[85-88], mass spectra [89-93], infrared spectra 
[94,95,84,96-98], fluorescence [99] and X-ray fluo-
rescence spectra [100-102], gamma ray spectra 
[103,104], Auger electron spectra [105], Raman spec-
tra [106,107], Mossbauer spectra [108], plasma spec-
tra [109], circular dichroism spectra [110,111], An-
other type of neural networks application in spec-
troscopy is the prediction of the spectrum of the given 
compound (Raman: [112], NMR: [113-115], IR: 
[116]). 

7.3 PROCESS CONTROL 

In process control almost all the data come from non-
linear equations or from non-linear processes and are 
therefore very hard to model and predict. Process 
control was one of the first fields in chemistry to 
which the neural network approach was applied. The 
basic problems in the process control and their solu-
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tion using neural networks are described in [117], The 
main goal of such studies is to receive a network that 
is able to predict a potential fault before it occurs 
[118,119], Another goal of neural networks application 
in process control is control of the process itself. In 
[120] a method for extracting information from 
spectroscopic data was presented and studied by 
computer simulations. Using a reaction with non- trivial 
mechanism as model, outcomes in form of spectra 
were generated, coded, and fed into a neural network. 
Through proper training the network was able to 
capture the information concerning the reaction 
hyperplane, and predict outcomes of the reaction 
depending on past history. Kaiming et al. in their article 
[121] used a neural network control strategy for fed-
batch baker's yeast cultivation. A non-linear single-
input single-output system was identified by the neural 
network, where the input variable was the feed rate of 
glucose and the output variable was the ethanol 
concentration. The training of the neural network was 
done by using the data of on-off control. The 
explanation of results showed that such neural 
network could control the ethanol concentration at the 
setpoint effectively. In a review [122] are stated 27 
references of approaches used to apply intelligent 
neural-like (i.e., neural network-type) signal processing 
procedures to solve a problem of acoustic emission 
and active ultrasonic process control measurement 
problems. 

7.4. PROTEIN FOLDING 

Proteins are made up of elementary building blocks, 
the amino acids. These amino acids are arranged 
sequentially in a protein, the sequence is called the 
primary structure. This linear structure folds and turns 
into three-dimensional structure that is referred as 
secondary structure (a-helix, /3-sheet). Because the 
secondary structure of a protein is very important to 
biological activity of the protein, there is much interest 
in predicting the secondary structures of proteins from 
their primary structures. In recent years numerous 
papers have been published on the use of neural 
networks to predict secondary structure of proteins 
from their primary structure. The pioneers in this field 
were Qian and Sejnowski [123], Since this date many 
neural networks systems for predicting secondary 
structure of proteins were de- veloped. For example, 
Vieth et al. [124] developed a complex, cascaded 
neural network designed to predict the secondary 
structure of globular proteins. Usually the prediction of 
protein secondary structure by a neural network is 
based on three states (alpha- helix, beta-sheet and 
coil). However, there was a recent report of a protein 
with a more detailed secondary structure, the 310-
helix. In application of a neural network to the 
prediction of multi-state secondary structures [125], 
some problems were discussed. The prediction of 
globular protein secondary structures was studied by a 
neural network. Application of a neural network with a 
modular architecture to the prediction of protein 
secondary structures (alpha-helix, beta-sheet and coil) 
was presented. Each module was a three-layer neural 

network. The results from the neural network with a 
modular architecture and with a simple three-layer 
structure were compared. The prediction accuracy by 
a neural network with a modular architecture was 
reported higher than the ordinary neural network. 
Some attempts were also done to predict tertiary 
structure of proteins. In [126] is described a software 
for the prediction of the 3-di- mensional structure of 
protein backbones by neural network. This software 
was tested on the case of group of oxygen transport 
proteins. The success rate of the distance constraints 
reached 90%, which showed its reliability. 

7.5. QUANTITATIVE STRUCTURE ACTIVITY 
RELATIONSHIP 

Quantitative structure activity relationship (QSAR) or 
quantitative structure property relationship (QSPR) 
investigations in the past two decades have made 
significant progress in the search for quantitative 
relations between structure and property. The basic 
modelling method in these studies is a multilinear 
regression analysis. The non-linear relationships 
were successfully solved by neural networks, that in 
this case act as a function aproximator. The use of 
feed-forward back-propagation neural networks to 
perform the equivalence of multiple linear regression 
has been examined in [127] using artificial structured 
data sets and real literature data. Neural networks 
predictive ability has been assessed using leave-
one-out cross-validation and training/test set 
protocols. While networks have been shown to fit 
data sets well, they appear to suffer from some dis-
advantages. In particular, they have performed 
poorly in prediction for the QSAR data examined in 
this work, they are susceptible to chance effects, and 
the relationships developed by the networks are 
difficult to interpret. Other comparison between 
multiple linear regression analysis and neural 
networks can be found in [128,129]. In a review (113 
refs.) [130] QSAR analysis was found to be 
appropriate for use with food proteins. PLS (partial 
least-squares regression), neural networks, multiple 
regression analysis and PCR (principal component 
regression) were used for modelling of hydrophobity 
of food proteins and were compared. Neural 
networks can be also used to perform analytical 
computation of similarity of molecular electrostatic 
potential and molecular shape [131]. Concrete 
applications of the neural networks can be found for 
example in [132-135]. 

7.6. ANALYTICAL CHEMISTRY 

The use of neural networks in analytical chemistry is 
not limited only to the field of spectroscopy. The 
general use of neural networks in analytical 
chemistry was discussed in [136], Neural networks 
were successfully used for prediction of chromatog-
raphy retention indices [137-139], or in analysis of 
chromatographic signals [140]. Also processing of 
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signal from the chemical sensors was intensively 
studied [141-144]. 

8. INTERNET RESOURCES 

In World-Wide-Web you can find many information 
resources concerning neural networks and their 
applications. This chapter will provide general infor-
mation about such resources. 

The news Usenet group comp.ai.neural-nets is in-
tended as a discussion forum about artificial neural 
networks. There is an archive of comp.ai.neural-nets 
on the WWW at http://asknpac.npac.syr.edu. The 
frequently asked question (FAQ) list from this news-
group can be found in http://ftp://ftp.sas.com/ 
pub/neural/FAQ.html. Others news groups partially 
connected with neural networks are comp.the- ory.self-
org-sys, comp.ai.genetic and comp.ai.fuzzy. 

The Internet mailing list dealing with all aspects of 
neural networks is called Neuron-Digest, to subscribe 
send e-mail to neuron-request@cattell.psych. 
upenn.edu. 

Some articles about neural networks can be found in 
Journal of Artificial Intelligence Research, (http: / / 
www.cs.washington.edu / research / jair/ home.html) or 
in Neural Edge Library (http:// 
www.clients.globalweb.co.uk / nctt / newsletter/). 

A very good and complex list of on-line and some off-
line articles about all aspects of the back-propagation 
algorithm is the Backpropagator's review, 
http://www.cs.washington.edu/research/jair/ 
home.html). 

The most complex set of technical reports, articles and 
Ph.D. thesis can be found at the so-called Neuro- 
prose (ftp://archive.cis.ohio-state.edu/pub/ 
neuroprose). Another large collection of neural net-
work papers and software is at the Finish University 
Network (ftp:// ftp.funet.fi/ pub/ sci/ neural). It contains 
the major part of the public domain software and 
papers (e.g. mirror of Neuroprose). Many scientific 
groups dealing with neural network problems has their 
own WWW sites with downloadable technical reports, 
e.g. Electronic Circuit Design Workgroup (http:// 
www.eeb.ele.tue.nl/ neural / reports.html), Institute for 
research in Cognitive Science 
(http://www.cis.upenn.edu/ ~ ires/ Abstracts.html), 
UTCS (http://www.cs.utexas. edu / users / nn/ pages / 
publications / publications, html), IDIAP 
(http://www.idiap.ch/html/idiap- networks.html) etc. 

For the updated list of shareware/freeware neural 
network software look at http://www.emsl.pnl. 
gov:2080/ d ocs/ cie/ neural/ systems/ shareware.html, 
for the list of commercial software look at StatSci 
(http://www.scitechint.com/ neural.HTM) or at 

http://www.emsl.pnl.gov:2080/ docs/ cie/ neural/ 
systems/ software.html. Very complex list of software 
is also available in FAQ. One of the best freeware 
neural network simulators is the Stuttgart Neural 
Network Simulator SNNS (http: / / www.informatik.uni-
stuttgart.de / ipvr / bv/ projekte/ snns/ snns.html), that 
is targeted for Unix systems. MS-Windows front-end 
for SNNS (http:// www.lans.ece.utexas.edu/ 
winsnns.html) is available too. 

For experimentation with neural networks there are 
available several databases, e.g. the neural-bench 
Benchmark collection (http:// www.boltz.cs.cmu. edu/). 
For the full list see FAQ. 

You can find nice list of NN societies in the WWW at 
http:// www.emsl.pnl.gov:2080/ docs/ 
cie/neural/societies.html and at http:// 
www.ieee.org:80/ nnc/research/othernnsoc.html. 

There is a WWW page for Announcements of 
Conferences, Workshops and Other Events on Neu-
ral Networks at IDIAP in Switzerland (http:// 
www.idiap.ch / html / idiap-networks.html). 

9. EXAMPLE OF THE APPLICATION - 
NEURAL-NETWORK PREDICTION OF 
CARBON-13 NMR CHEMICAL SHIFTS OF 
ALKANES 

13
C NMR chemical shifts belong to the so-called local 

molecular properties, where it is possible to assign 
unambiguously the given property to an atom (vertex) 
of structural formula (molecular graph). In order to 
correlate 

13
 C NMR chemical shifts with the molecular 

structure we have to possess information about the 
environment of the given vertex. The chosen atom 
plays a role of the so-called root [146], a vertex 
distinguished from other vertices of the molecular 
graph. For alkanes embedding frequencies [147-149] 
specify the number of appearance of smaller rooted 
subtrees that are attached to the root of the given 
tree (alkane), see Figs. 4 and 5. Each atom (a non-
equivalent vertex in the tree) in an alkane (tree) is 
determined by 13 descriptors d = (dl, d2, ..., d13) that 
are used as input activities of neural networks. The 
entry dt determines the embedding frequency of the 
ith rooted subtree (Fig. 4) for the given rooted tree 
(the root is specified by that carbon atom of which the 
chemical shift is calculated). Their number and form 
are determined by our requirement to have all the 
rooted trees through 5 vertices. To avoid information 
redundancy, we have deleted those rooted trees, 
which embedding frequencies can be exactly 
determined from embedding frequencies of simpler 
rooted subtrees. This means, that we consider at 
most (5-carbon effects.< 

http://asknpac.npac.syr.edu/
http://www.cs.washington.edu/
http://www.clients.globalweb.co.uk/
http://www.cs.washington.edu/research/jair/
http://www.eeb.ele.tue.nl/
http://www.cis.upenn.edu/
http://www.cs.utexas/
http://www.idiap.ch/html/idiap-
http://www.emsl.pnl/
http://www.scitechint.com/
http://www.emsl.pnl.gov:2080/
http://www.informatik.uni-stuttgart.de/
http://www.informatik.uni-stuttgart.de/
http://www.lans.ece.utexas.edu/
http://www.boltz.cs.cmu/
http://www.emsl.pnl.gov:2080/
http://www.ieee.org/
http://www.idiap.ch/
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Fig. 4. List of 13 rooted subtrees that are used for the 
calculation of embedding frequencies. 

To C9 available in the book [150] (cf. Ref. [151]) (al- 
kanes C9 are not complete) are used as objects in our 
calculations. The total number of all alkanes consid-
ered in our calculations is 63, they give 326 different 
chemical shifts for topologically non-equivalent posi-
tions in alkanes. This set of 326 chemical shifts is di-
vided into the training set and the test set. 

The decomposition of whole set of chemical shifts into 
training and test sets was carried out by making use of 
the Kohonen neural network [4] with architecture 
specified by 14 input neurons and 15 X 15 = 275 
output neurons situated on a rectangular grid 15 X 15. 

 

The input activities of each object (chemical shift) are 
composed of 14 entries, whereby the first 13 entries 
are embedding frequencies and the last, 14th entry, is 
equal to the chemical shift. Details of the used Koho-
nen network are described in Dayhoff's textbook [152], 
We used Kohonen network with parameters a = 0.2 
(learning constant), d0 = 10 (initial size of 
neighbourhood), and T = 20 000 (number of learning 
steps). We have used the rectangular type of neigh-
bourhood and the output activities were determined as 
Lj (city-block) distances between input activities and 
the corresponding weights. After finishing the adap-
tation process, all 326 objects were clustered so that 
each object activates only one output neuron on the 
rectangular grid, and some output neurons are never 
activated and/or some output neurons are activated by 
one or more objects. This means that this decom-
position of objects through the grid of output neurons 
may be considered as a clustering of objects, each 
cluster, composed of one or more objects, being 
specified by a single output neuron. Finally, the 
training set is created so that we shift one object (with 
the lowest serial index) from each cluster to the 
training set and the remaining ones to the test set. 
Then we get training set composed of 112 objects and 
the test set composed of 214 objects. 

10. CONCLUSIONS 

ANNs should not be used without analysis of the 
problem, because there are many alternatives to the 

use of neural networks for complex approximation 
problems. There are obvious cases when the use of 
neural networks is quite inappropriate, e.g. when the 
system is described with the set of equations, that re-
flects its physico-chemical behaviour. ANNs is a 
powerful tool, but the classical methods (e.g. MLRA, 
PCA, cluster analysis, pattern recognition etc.) can 
sometimes provide better results in shorter time. 
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