

REVIEW ARTICLE

Study of Political Representations: Diplomatic
Missions of Early Indian to Britain

Journal of
Advances and

Scholarly

Researches in
Allied Education

Vol. 3, Issue 6,
April-2012,

ISSN 2230-7540

Journal of Advances in
Science and Technology

Vol. IV, No. VII, November-
2012, ISSN 2230-9659

REVIEW ARTICLE

ISA: IMAGE SPACE BASED
VISUALIZATION OF UNSTEADY FLOW ON

SURFACES

www.ignited.in

Aparna Sharma

w
w

w
.i

gn
it

e
d

.i
n

1

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

Isa: Image Space Based Visualization of
Unsteady Flow on Surfaces

Aparna Sharma

Research Scholar, CMJ University, Shillong, Meghalaya

---------------------------♦-----------------------------

Dense, texture-based, unsteady flow visualization on
surfaces has remained an elusive problem since the
introduction of texture-based flow visualization
algorithms themselves. The class of fluid flow
visualization techniques that generate dense
representations based on textures started with the
Spot Noise and LIC. The main advantage of this class
of algorithms is their complete depiction of the flow
field while their primary drawback is, in general, the
computational time required to generate the results.

Recently, two new algorithms, namely Lagrangian-
Eulerian Advection (LEA) and Image Based Flow
Visualization (IBFV) , have been introduced that
overcome the computation time hurdle by generating
two-dimensional flow visualization at interactive frame
rates, even for unsteady flow. This paves the way for
the introduction of new algorithms that overcome the
same problems on boundary surfaces and in three
dimensions. In this chapter which has also been
published elsewhere we present a new algorithm, ISA
Image Space Advection that generates dense
representations of arbitrary fluid flow on complex, non-
parameterized surfaces, more specifically, surfaces
from computational fluid dynamics (CFD). However,
the algorithm is general enough to apply to other
vector field data associated with a surface such as
blood vessel flow.

Traditional visualization of boundary flow using texture
mapping first maps one or more 2D textures to a
surface geometry defined in 3D space. The textured
geometry is then rendered to image space. Here, we
alter the classic order of operations. First we project
the surface geometry to image space and then apply
texturing. In other words, conceptually texture
properties are advected on boundary surfaces in 3D
but in fact our algorithm realizes texture advection
solely in image space. The result is a versatile
visualization technique with the following
characteristics:

_ generates a dense representation of unsteady flow
on surfaces

_ visualizes flow on complex surfaces composed of
polygons whose number is on the order of 200,000 or
more

_ visualizes flow on dynamic meshes with time-
dependent geometry and topology

_ visualizes flow independent of the surface mesh’s
complexity and resolution

Figure: Visualization of flow on the surface of an
intake manifold. The ideal intake manifold
distributes flow evenly to the piston valves.

_ supports user-interaction such as rotation,
translation, and zooming always maintaining a
constant, high spatial resolution

_ the technique is fast, realizing up to 20 frames per
second

The performance is due, among other reasons, to the
exploitation of graphics hardware features and
utilization of frame-to-frame coherency. The rest of
the chapter is organized as follows: in Section we
discussed related work, Section details unsteady flow
visualization on surfaces from CFD. Implementation
details are described in Section while results and
conclusions are discussed in Section .

PHYSICAL SPACE VS. PARAMETER SPACE
VS. IMAGE SPACE

Aparna Sharma

w
w

w
.i

g
n

it
e

d
.i
n

2

 Isa: Image Space Based Visualization of Unsteady Flow on Surfaces

One approach to advecting texture properties on
surfaces is via the use of a parameterization, a topic
that has been studied ad nauseam e.g., Levy .
According to Stalling , applying LIC to surfaces
becomes particularly easy when the whole surface can
be parameterized globally in two dimensions, e.g., in
the manner of Forssell and Cohen. However, there are
drawbacks to this approach. Texture distortions are
introduced by the mapping between parameter space
and physical space and, more importantly, for a large
number of surfaces, no global parameterization is
available such as isosurfaces from marching cubes
and most unstructured surface meshes resulting from
CFD. Surface meshes from CFD may consist of
smoothly joined parametric patches, but can have a
complex topology and therefore, in general, cannot be
parameterized globally. Figures are examples of
surfaces for which a global parameterization is not
easily derived.

Another approach to advecting texture properties on
surfaces would be to immerse the mesh into a 3D
texture, then the texture properties could be advected
directly according to the 3D vector field. This would
have the advantages of simplifying the mapping
between texture and physical space and would

Figure : Visualization of flow at the complex
surface of a cooling jacket -a composite of over

250,000 polygons.

result in no distortion of the texture. However, this
visualization would be limited to the maximum
resolution of the 3D texture, thus causing problems
with zooming. Also, this approach would not be very
efficient in that most of the texels are not used. The
amount of texture memory required would also exceed
that available on our graphics card, e.g., we would
need approximately 500MB of texture memory if we
use 4 bytes per texel and a 5123 resolution texture.

Can the problem be reduced to two dimensions? The
surface patches can be packed into texture space via

a triangle packing algorithm in the manner described
by Stalling. However, the packing problem becomes
complex since our CFD meshes are composed of
many scalene triangles as opposed to the equilateral
and isosceles triangles often found in computational
geometry. The problem of packing scalene triangles
has been studied by Carr. For CFD meshes, triangles
generally have very disparate sizes. For a given
texture resolution, many triangles would have to be
packed that cover less than one texel. To by-pass this,
the surfaces could be divided into several patches
which could be stored into a texture atlas. In any case,
computation time would be spent generating texels
which cover polygons hidden from the current point of
view. The preceding discussion leads us to an
alternative solution that, ideally, has the following
characteristics: works in image space, efficiently
handles large numbers of surface polygons, spends no
extra computation time on occluded polygons, does
not spend computation time on polygons covering
less than a pixel, and supports user interaction such
as zooming, translation, and rotation.

Figure : A wire frame view of the surface of two
intake ports showing its 221,000 polygonal
composition:(left) an overview from the top, note
that many polygons are cover less than one pixel

Aparna Sharma

w
w

w
.i

gn
it

e
d

.i
n

3

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

(right) a close-up view of the mesh between the
two intake ports.

METHOD OVERVIEW

The algorithm presented here simplifies the problem
by confining the advection of texture properties to
image space. We project the surface geometry to
image space and then apply a series of textures. This
order of operations eliminates portions of the surface
hidden from the viewer. In short, our proposed method
for visualization of flow on surfaces is comprised of the
following procedure:

1. associate the 3D flow data with the polygons at the
boundary surface i.e., a velocity vector is stored at
each polygon vertex of the surface

2. project the surface and its vector field onto the
image plane

3. identify geometric discontinuities

4. advect texture properties according to the vector
field in image space

5. inject and blend noise

6. apply additional blending along the geometric
discontinuities previously identified

7. overlay all optional visualization cues such as
showing a semi-transparent representation of the
surface with shading

These stages are depicted schematically in Figure 4.4.
Each step of the pipeline is necessary for the dynamic
cases of unsteady flow, time-dependent geometry,
rotation, translation, and scaling, and only a subset is
needed for the static cases involving steady-state flow
and no changes to the view-point. We consider each
of these stages in more detail in the sections that
follow.

VECTOR FIELD PROJECTION

In order to advect texture properties in image space,
we must project the vector field associated with the
surface to the image plane, taking into account that the
velocity vectors are stored at the polygon vertices. We
chose to take advantage of the graphics hardware to
project the vector field to the image plane. We assign
a color whose R, G, and B values encode the x, y, and
z components of the local vectors to each vertex of the
boundary surface respectively. The velocity-colored
geometry is rendered to the frame buffer.

Figure : Flow diagram of texture-based flow
visualization on complex surfaces -k represents
time as a frame number.

We use the term velocity image to describe the result
of encoding the velocity vectors at the mesh vertices
into color values. The velocity image is interpreted as
the vector field and is used for the texture advection
in image space. More precisely, the color assignment
can be done with a simple scaling operation. For
each color component, hrgb, we assign a velocity,
vxyz component according to:

hr = vx - vmin x / vmax x - vmin x

hg = vy - vmin y / vmax y - vmin y

hb = vz - vmin z / vmax z - vmin z

The minimum velocity component is subtracted for
each color component respectively, in an effort to
minimize loss of accuracy. The use of a velocity
image yields the following benefits: the advection
computation and noise blending is simpler in image
space, thus we inherit advantages from the LEA and
IBFV, the vector field and polygon mesh are
decoupled, thereby freeing up expensive computation
time dedicated to polygons smaller than a single
pixel, conceptually, this is performing hardware-
accelerated occlusion culling, since all polygons
hidden from the viewer, are immediately eliminated
from any further processing, and this operation is
supported by the graphics hardware. Saving the
velocity image to main memory is simple, fast, and
easy. A sample velocity image is shown in Figure.

The construction of the velocity image allows us to
take advantage of hardware-accelerated flow field
reconstruction. During the construction of the velocity

Aparna Sharma

w
w

w
.i

g
n

it
e

d
.i
n

4

 Isa: Image Space Based Visualization of Unsteady Flow on Surfaces

image, we enable Gouraud Shading, also supported
by the graphics hardware. Since each velocity
component is stored as hue at each polygon vertex of
the surface, the smooth interpolation of hue amounts
to hardware-accelerated vector field reconstruction.
This is important for a minimum of two reasons. First,
the polygonal primitive we choose at image advection
time is independent of the original mesh polygons
more in Section . In other words, the vertices of the
mesh we use to distort the image are not the same
vertices where the original velocity vectors are stored.
Second, interpolation is essential for flow field
reconstruction. When the surface is rendered with
velocity encoded as hue, the vertices of some
polygons are clipped during the projection process.
However, we still need to access the vector field
values inside those polygons, and not just at the
vertices, hence the need for reconstruction. We also
note that we are not necessarily limited to linear
interpolation for reconstruction.

Figure: The 5 component images, plus a 6th
composite image, used for the visualization of
surface flow on a ring: (top, left) the velocity
image, (top, middle) the geometric edge
boundaries, (top, right) the advected and blended
textures, (bottom, left) a sample noise image,
(bottom, middle) an image overlay, (bottom,
right) the result of the composited images with
an optional velocity color map. The geometric
edge boundaries are drawn in black for
illustration.

Higher order interpolation schemes can be
supported by graphics hardware.

The velocity vectors are de-coded from the velocity
image according to:

vx = hr . (vmax x - vmin x) + vmin x

vy = hg . (vmax y - vmin y) + vmin y

vz = hb . (vmax z - vmin z) + vmin z

The de-coded velocity vectors used to compute the
advection mesh are then projected onto the

Aparna Sharma

w
w

w
.i

gn
it

e
d

.i
n

5

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

image plane.

The magnitude of the velocity vectors at those parts of
the surface orthogonal to the image plane may be
shortened as a result of perspective projection, i.e., if
the dot product between the image plane normal and
the 3D surface normal is zero or close to zero. This
can reduce the visual clarity of the vector field’s
direction during animation. In our implementation, we
added an option that allows the user to apply a bias to
the velocity vectors that are shortened close to zero
due to the projection. We can use this bias to reduce
the scaling effect for curved surfaces. Conceptually it
is like applying a reverse velocity clamp. The
projection of the vectors to the image plane is done
after velocity image construction for 2 reasons:

(1) not all of the vectors have to be projected , thus
saving computation time

(2) we use the original 3D vectors for the velocity
mask.

ADVECTION MESH COMPUTATION AND
BOUNDARY TREATMENT

After the projection of the vector field we compute the
mesh used to advect the textures similar to IBFV. We
distort a regular, rectilinear mesh according to the
velocity vectors stored at mesh grid intersections. The
distorted mesh vertices can then be computed by
advecting each mesh grid intersection according to the
discretized Euler approximation of a pathline, p, the
same as a streamline for steady flow expressed as:

pk+1 = pk + vp(pk; t) ∆t

where vp represents a magnitude and direction after
projection to the image plane. The texture coordinates
located at the regular, rectilinear mesh vertices are
then mapped to the forward distorted mesh positions.
The distorted mesh positions are stored for fast
advection of texture properties for static scenes.
Special attention must be paid in order to handle flow
at geometric boundaries of the surface.Figure shows
an overview of the original IBFV process. During the
visualization, each frame is advected, rendered, and
blended in with a background image. If we look
carefully at the distort phase of the algorithm, we
notice that there is nothing to stop the image from
being advected outside of the physical boundary of the
geometry. While this is not a problem when the
geometry covers the entire screen, this can lead to
artifacts for geometries from CFD, especially in the
case of boundaries with a non-zero outbound flow,
e.g., flow outlets.

To address this problem we borrow a notion from LEA
that treats non-rectangular flow domains, namely, the

use of backward coordinate integration. Using
backward integration, equation becomes:

Pk-1 = pk - vp(pk-1; t)∆t

In this case the texture coordinates located at the
backward distorted mesh positions are mapped to the
regular, rectilinear mesh vertices. Backward integration
does not allow advection of image properties past the
geometric boundaries.

Figure : An overview of the original image based
flow visualization

EDGE DETECTION AND BLENDING

While we gain many advantages by decoupling the
image advection process with the 3D surface
geometry, artifacts can result, especially in the case
of geometries with sharp edges. If we look carefully at
the result of advecting texture properties in image
space, we notice that in some cases a visual flow
continuity is introduced where it may be undesirable.
A sample case is shown in Figure. A portion of the 3D
geometry, shown colored, is much less visible after
the projection onto the image plane. If the flow texture
properties are advected across this edge in image
space, also shown colored, an artificial continuity
results. To handle this, we incorporate a geometric
edge detection process into the algorithm. During the
image integration computation, we compare spatially
adjacent depth values during one integration and
advection step. We compare the associated depth
values, zk-1 and zk in world space of pk- 1 and pk
from equation , respectively.

Aparna Sharma

w
w

w
.i

g
n

it
e

d
.i
n

6

 Isa: Image Space Based Visualization of Unsteady Flow on Surfaces

Figure : When a 3D surface geometry (left) is
projected, continuity is created in image space
(right). If the flow aligned texture properties are
advected across this edge, an artificial flow
continuity may result.

If | zk - 1 - zk | > E | pk- 1 – pk |

where zk is a threshold value, then we identify an
edge. All positions, p, for which equation is true, are
classified as edge crossing start points. Special
treatment must be given when advecting texture
properties from these points. This process does not
detect all geometric edges, only those edges across
which flow texture properties should not be advected.

Figure top, middle shows one set of edges from the
detection process. The geometric edges are identified
and stored during the dynamic visualization case and
additional blending is applied. During the edge
blending phase of the algorithm we introduce
discontinuities in the texture aligned with the geometric
discontinuities from the surface, i.e., gray values are
blended in at the edges. This has the effect of adding
a gray scale phase shift to the pixel values already
blended. This could obviously be handled in different
ways, e.g., choosing a random noise value to advect
or inverting the noise value already present. Some
results of the edge detection and blending phase are
illustrated in Figure . In our data sets an " of 1-2% of
depth buffer is practical. However, the users may set
their own value if fine tuning of the visualization is
needed. The same edge detection and blending
benefits incoming boundary flow. Also an artifact of the
IBFV algorithm, geometric boundaries with incoming
flow may appear dimmer than the rest of the geometry.

This is a result of the noise injection and blending
process described in Section . In short, the
background color shows through more in areas of
incoming flow because not as much noise has been
blended in these areas. Figure top, shows a 2D slice
through a 3D mesh from a CFD simulation with
incoming boundary flow coming in through the narrow
inlet from the right. Note that the edge of the inlet
appears dim. Figure bottom, shows the same slice with
edge blending turned on. The boundary artifacts of the
noise injection and blending process are no longer a
distraction. Edge detection and blending also plays in
important role while an object is rotating. Without
special treatment, contours in image space become
blurred when different portions of a surface geometry
overlap, such as when blood vessels in Figure overlap
during rotation.

NOISE BLENDING

By reducing the image generation process back to two
dimensions, the noise injection and blending phase
falls in line with the original IBFV technique, namely,
an image, F, is related to a previous image,

Figure : A close-up example of geometric edge
detection: on the left side, geometric edge
detection is disabled, on the right side enabled.

Figure : Here we see a 2D slice through a 3D
geometry from a CFD simulation. (top) With no
edge blending, the background color shows
through boundary areas with incoming flow.

Aparna Sharma

w
w

w
.i

gn
it

e
d

.i
n

7

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

(bottom). With edge blending, these artifacts are
no longer a distraction.

G, by [164]:

F(p; k) = ∞∑ k-1 Xi =0 (1 - ∞)
t
 G(pk- i)

where p represents a pathline, ∞ defines a blending
coefficient, and k represents time as a frame number.
Thus a point, pk, of an image Fk, is the result of a
convolution of a series of previous images, G(x; i),
along the pathline through pk, with an decay filter. The
blended noise images have both spatial and temporal
characteristics. In the spatial domain, a single noise
image, g(x), is described as a linearly interpolated
sequence of n random values, Gi, in the range ,

g(x) =∑hs(x - is)Gi mod n

where the spacing, s, between noise samples is
generally greater than or equal to the distance
traversed by an image property in one advection step
and hs represents a triangular black and white pulse
function. Here x represents a location in the flow
domain. In practice, we give the user control of s,
resulting in multi-frequency texture resolutions in the
spacial domain. The background textures used for
blending also vary in time. In the temporal domain,
each point, Gi in the background texture, periodically
increases and decays according to a profile, w(t), e.g.,

Gi;k = w((k/M + φi) mod 1)

where φi represents a random phase, drawn from the
interval [0,1],M is the total number of background
noise images used, and where w(t) is defined for all
time steps. We use a square wave profile, i.e., w(t) = 1
if t < 1=2 and 0 otherwise. In our application, the user
has the option of varying M. Smaller values ofM result
in higher frequency noise in the temporal domain
whereas higher values M result in a lower temporal
frequency. Figure shows a sample blended image and
Figure shows a sample noise image.

 IMAGE OVERLAY APPLICATION

The rendering of the advected image and the noise
blending may be followed by an optional image
overlay. An overlay enhances the resulting texture-
based representation of surface flow by applying color,
shading, or any attribute mapped to color. In
implementation, we generate the image overlay
following the construction of the velocity image. This
overlay may render any CFD simulation attribute
mapped to hue. The overlay is constructed once for
each static scene and applied after the image
advection, edge blending, and noise blending phases.
Since the image advection exploits frame-to-frame
coherency, the overlay must be applied after the
advection in order to prevent the surface itself from

being smeared. Also worthy of mention, is that the
opacity value of the image overlay is a free parameter
we provide to the user.

IMPLEMENTATION

In this section we consider some aspects of the
algorithm not previously discussed which are important
for implementation. Our implementation is based on
the highly portable OpenGL library.

TEXTURE CLIPPING

In our application, the resolution of the quadrilateral
mesh used to warp the image can be specified by the
user. The user may specify a coarse resolution mesh,
e.g., 128 x 128, for faster performance or a fine
resolution mesh, e.g., 512 x 512, for higher accuracy.
However, if the resolution of the advection mesh is
too coarse in image space, artifacts begin to appear.
Figure illustrates these artifacts zoomed in on the
edge of a surface. In order to minimize the jagged
edges created by coarse resolution texture
quadrilaterals, we apply a texture clipping function.
Subsets of textured quadrilateral that do not cover the
surface are clipped from the visualization as shown in
Figure. This can be implemented simply with the
image overlay by maximizing the opacity wherever
the depth buffer value is maximized, i.e., wherever
there is a great depth.

VELOCITY MASK

In order to dim high frequency noise in low velocity
regions, the user also has the option of applying a
velocity mask. We adopt the velocity mask of Jobard
et al. [63] for our purposes here, namely:

∞ = 1 - (1 - v)
m

where ∞ decreases as a function of velocity
magnitude. In our case, the image overlay becomes
more opaque in regions of low velocity and more
transparent in areas of high velocity. With the velocity
mask

Aparna Sharma

w
w

w
.i

g
n

it
e

d
.i
n

8

 Isa: Image Space Based Visualization of Unsteady Flow on Surfaces

Figure :The result of, left, a coarse resolution
advection mesh with artifacts and, right, the
application of texture clipping. The resolution of
the advection mesh shown on the left is 32 x 32 for
illustration.

enabled, the viewer’s attention is drawn away from
areas of stagnant flow, and towards areas of high flow
velocity. We note that in the context of CFD simulation
data, engineers are often very concerned about areas
of stagnant flow. In the case of a cooling jacket,
stagnant flow may represent a region of the geometry
where the temperature is too high, possibly leading to
boiling conditions thus reducing the effectiveness of
the cooling jacket itself. Therefore, in our case the
engineers may disable the velocity mask or use the
velocity mask to highlight areas of flow, e.g., make the
hue brighter in areas of low velocity.

PERFORMANCE AND RESULTS

Our visualization technique is applied primarily to
large, highly irregular, adaptive resolution meshes
commonly resulting from computational fluid dynamics
simulations.The ideal intake manifold supplies an
equal amount of fluid flow to each piston valve.
Visualizing the flow at the surface gives the engineer
insight into any imbalances between the inlet pipes, in
this case, the long narrow pipes of the geometry.
Figure shows our method applied to a surface of an
intake port mesh composed of 221K polygons. The
intake port mesh is composed of highly adaptive
resolution surface polygons and for which no global
parameterization is readily available. The method
described here allows the user to zoom in at arbitrary
view points always maintaining a high spatial
resolution visualization. The algorithm applies equally
well to meshes with time-dependent geometry and
topology. Figure shows the surface of a piston cylinder
with the piston head defining the bottom of the surface.
The method here enables the visualization of fuel
intake as the piston head slides down the cylinder. The
resulting flow visualization has a smooth spatio-
temporal coherency. Our algorithm also has
applications in the field of medicine. Figure shows the
circulation of blood at the junction of blood vessels.

An abnormal cavity has developed that may hinder the
optimal distribution of blood.

