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Dense, texture-based, unsteady flow visualization on 
surfaces has remained an elusive problem since the 
introduction of texture-based flow visualization 
algorithms themselves. The class of fluid flow 
visualization techniques that generate dense 
representations based on textures started with the 
Spot Noise and LIC. The main advantage of this class 
of algorithms is their complete depiction of the flow 
field while their primary drawback is, in general, the 
computational time required to generate the results. 

Recently, two new algorithms, namely Lagrangian-
Eulerian Advection (LEA) and Image Based Flow 
Visualization (IBFV) , have been introduced that 
overcome the computation time hurdle by generating 
two-dimensional flow visualization at interactive frame 
rates, even for unsteady flow. This paves the way for 
the introduction of new algorithms that overcome the 
same problems on boundary surfaces and in three 
dimensions. In this chapter which has also been 
published elsewhere we present a new algorithm, ISA 
Image Space Advection that generates dense 
representations of arbitrary fluid flow on complex, non-
parameterized surfaces, more specifically, surfaces 
from computational fluid dynamics (CFD). However, 
the algorithm is general enough to apply to other 
vector field data associated with a surface such as 
blood vessel flow. 

Traditional visualization of boundary flow using texture 
mapping first maps one or more 2D textures to a 
surface geometry defined in 3D space. The textured 
geometry is then rendered to image space. Here, we 
alter the classic order of operations. First we project 
the surface geometry to image space and then apply 
texturing. In other words, conceptually texture 
properties are advected on boundary surfaces in 3D 
but in fact our algorithm realizes texture advection 
solely in image space. The result is a versatile 
visualization technique with the following 
characteristics: 

_ generates a dense representation of unsteady flow 
on surfaces 

_ visualizes flow on complex surfaces composed of 
polygons whose number is on the order of 200,000 or 
more 

_ visualizes flow on dynamic meshes with time-
dependent geometry and topology 

_ visualizes flow independent of the surface mesh’s 
complexity and resolution 

 

Figure: Visualization of flow on the surface of an 
intake manifold. The ideal intake manifold 
distributes flow evenly to the piston valves. 

_ supports user-interaction such as rotation, 
translation, and zooming always maintaining a 
constant, high spatial resolution 

_ the technique is fast, realizing up to 20 frames per 
second 

The performance is due, among other reasons, to the 
exploitation of graphics hardware features and 
utilization of frame-to-frame coherency. The rest of 
the chapter is organized as follows: in Section  we 
discussed related work, Section details unsteady flow 
visualization on surfaces from CFD. Implementation 
details are described in Section  while results and 
conclusions are discussed in Section . 

PHYSICAL SPACE VS. PARAMETER SPACE 
VS. IMAGE SPACE 
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One approach to advecting texture properties on 
surfaces is via the use of a parameterization, a topic 
that has been studied ad nauseam e.g., Levy . 
According to Stalling , applying LIC to surfaces 
becomes particularly easy when the whole surface can 
be parameterized globally in two dimensions, e.g., in 
the manner of Forssell and Cohen. However, there are 
drawbacks to this approach. Texture distortions are 
introduced by the mapping between parameter space 
and physical space and, more importantly, for a large 
number of surfaces, no global parameterization is 
available such as isosurfaces from marching cubes 
and most unstructured surface meshes resulting from 
CFD. Surface meshes from CFD may consist of 
smoothly joined parametric patches, but can have a 
complex topology and therefore, in general, cannot be 
parameterized globally. Figures are examples of 
surfaces for which a global parameterization is not 
easily derived. 

Another approach to advecting texture properties on 
surfaces would be to immerse the mesh into a 3D 
texture, then the texture properties could be advected 
directly according to the 3D vector field. This would 
have the advantages of simplifying the mapping 
between texture and physical space and would 

 

Figure : Visualization of flow at the complex 
surface of a cooling jacket -a composite of over 

250,000 polygons. 

result in no distortion of the texture. However, this 
visualization would be limited to the maximum 
resolution of the 3D texture, thus causing problems 
with zooming. Also, this approach would not be very 
efficient in that most of the texels are not used. The 
amount of texture memory required would also exceed 
that available on our graphics card, e.g., we would 
need approximately 500MB of texture memory if we 
use 4 bytes per texel and a 5123 resolution texture. 

Can the problem be reduced to two dimensions? The 
surface patches can be packed into texture space via 

a triangle packing algorithm in the manner described 
by Stalling. However, the packing problem becomes 
complex since our CFD meshes are composed of 
many scalene triangles as opposed to the equilateral 
and isosceles triangles often found in computational 
geometry. The problem of packing scalene triangles 
has been studied by Carr. For CFD meshes, triangles 
generally have very disparate sizes. For a given 
texture resolution, many triangles would have to be 
packed that cover less than one texel. To by-pass this, 
the surfaces could be divided into several patches 
which could be stored into a texture atlas. In any case, 
computation time would be spent generating texels 
which cover polygons hidden from the current point of 
view. The preceding discussion leads us to an 
alternative solution that, ideally, has the following 
characteristics: works in image space, efficiently 
handles large numbers of surface polygons, spends no 
extra computation time on occluded polygons, does 
not spend computation time on polygons covering 
less than a pixel, and supports user interaction such 
as zooming, translation, and rotation. 

 

 

Figure : A wire frame view of the surface of two 
intake ports showing its 221,000 polygonal 
composition:(left) an overview from the top, note 
that many polygons are cover less than one pixel 
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(right) a close-up view of the mesh between the 
two intake ports. 

METHOD OVERVIEW 

The algorithm presented here simplifies the problem 
by confining the advection of texture properties to 
image space. We project the surface geometry to 
image space and then apply a series of textures. This 
order of operations eliminates portions of the surface 
hidden from the viewer. In short, our proposed method 
for visualization of flow on surfaces is comprised of the 
following procedure: 

1. associate the 3D flow data with the polygons at the 
boundary surface i.e., a velocity vector is stored at 
each polygon vertex of the surface 

2. project the surface and its vector field onto the 
image plane 

3. identify geometric discontinuities 

4. advect texture properties according to the vector 
field in image space 

5. inject and blend noise 

6. apply additional blending along the geometric 
discontinuities previously identified 

7. overlay all optional visualization cues such as 
showing a semi-transparent representation of the 
surface with shading 

These stages are depicted schematically in Figure 4.4. 
Each step of the pipeline is necessary for the dynamic 
cases of unsteady flow, time-dependent geometry, 
rotation, translation, and scaling, and only a subset is 
needed for the static cases involving steady-state flow 
and no changes to the view-point. We consider each 
of these stages in more detail in the sections that 
follow. 

VECTOR FIELD PROJECTION 

In order to advect texture properties in image space, 
we must project the vector field associated with the 
surface to the image plane, taking into account that the 
velocity vectors are stored at the polygon vertices. We 
chose to take advantage of the graphics hardware to 
project the vector field to the image plane. We assign 
a color whose R, G, and B values encode the x, y, and 
z components of the local vectors to each vertex of the 
boundary surface respectively. The velocity-colored 
geometry is rendered to the frame buffer. 

 

Figure : Flow diagram of texture-based flow 
visualization on complex surfaces -k represents 
time as a frame number. 

We use the term velocity image to describe the result 
of encoding the velocity vectors at the mesh vertices 
into color values. The velocity image is interpreted as 
the vector field and is used for the texture advection 
in image space. More precisely, the color assignment 
can be done with a simple scaling operation. For 
each color component, hrgb, we assign a velocity, 
vxyz component according to: 

hr = vx - vmin x /  vmax x - vmin x 

hg = vy - vmin y / vmax y - vmin y  
  

hb = vz - vmin z / vmax z - vmin z 

The minimum velocity component is subtracted for 
each color component respectively, in an effort to 
minimize loss of accuracy. The use of a velocity 
image yields the following benefits: the advection 
computation and noise blending is simpler in image 
space, thus we inherit advantages from the LEA and 
IBFV, the vector field and polygon mesh are 
decoupled, thereby freeing up expensive computation 
time dedicated to polygons smaller than a single 
pixel, conceptually, this is performing hardware-
accelerated occlusion culling, since all polygons 
hidden from the viewer, are immediately eliminated 
from any further processing, and this operation is 
supported by the graphics hardware. Saving the 
velocity image to main memory is simple, fast, and 
easy. A sample velocity image is shown in Figure. 

The construction of the velocity image allows us to 
take advantage of hardware-accelerated flow field 
reconstruction. During the construction of the velocity 
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image, we enable Gouraud Shading, also supported 
by the graphics hardware. Since each velocity 
component is stored as hue at each polygon vertex of 
the surface, the smooth interpolation of hue amounts 
to hardware-accelerated vector field reconstruction. 
This is important for a minimum of two reasons. First, 
the polygonal primitive we choose at image advection 
time is independent of the original mesh polygons 
more in Section . In other words, the vertices of the 
mesh we use to distort the image are not the same 
vertices where the original velocity vectors are stored. 
Second, interpolation is essential for flow field 
reconstruction. When the surface is rendered with 
velocity encoded as hue, the vertices of some 
polygons are clipped during the projection process. 
However, we still need to access the vector field 
values inside those polygons, and not just at the 
vertices, hence the need for reconstruction. We also 
note that we are not necessarily limited to linear 
interpolation for reconstruction. 

 

 

 

 

 

 

Figure: The 5 component images, plus a 6th 
composite image, used for the visualization of 
surface flow on a ring: (top, left) the velocity 
image, (top, middle) the geometric edge 
boundaries, (top, right) the advected and blended 
textures, (bottom, left) a sample noise image, 
(bottom, middle) an image overlay, (bottom, 
right) the result of the composited images with 
an optional velocity color map. The geometric 
edge boundaries are drawn in black for 
illustration. 

Higher order interpolation schemes can be 
supported by graphics hardware. 

The velocity vectors are de-coded from the velocity 
image according to: 

vx = hr . (vmax x - vmin x) + vmin x 

vy = hg . (vmax y - vmin y) + vmin y   

vz = hb . (vmax z - vmin z) + vmin z 

The de-coded velocity vectors used to compute the 
advection mesh are then projected onto the 
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image plane. 

The magnitude of the velocity vectors at those parts of 
the surface orthogonal to the image plane may be 
shortened as a result of perspective projection, i.e., if 
the dot product between the image plane normal and 
the 3D surface normal is zero or close to zero. This 
can reduce the visual clarity of the vector field’s 
direction during animation. In our implementation, we 
added an option that allows the user to apply a bias to 
the velocity vectors that are shortened close to zero 
due to the projection. We can use this bias to reduce 
the scaling effect for curved surfaces. Conceptually it 
is like applying a reverse velocity clamp. The 
projection of the vectors to the image plane is done 
after velocity image construction for 2 reasons: 

(1) not all of the vectors have to be projected , thus 
saving computation time  

(2) we use the original 3D vectors for the velocity 
mask. 

ADVECTION MESH COMPUTATION AND 
BOUNDARY TREATMENT 

After the projection of the vector field we compute the 
mesh used to advect the textures similar to IBFV. We 
distort a regular, rectilinear mesh according to the 
velocity vectors stored at mesh grid intersections. The 
distorted mesh vertices can then be computed by 
advecting each mesh grid intersection according to the 
discretized Euler approximation of a pathline, p, the 
same as a streamline for steady flow expressed as: 

pk+1 = pk + vp(pk; t) ∆t   

where vp represents a magnitude and direction after 
projection to the image plane. The texture coordinates 
located at the regular, rectilinear mesh vertices are 
then mapped to the forward distorted mesh positions. 
The distorted mesh positions are stored for fast 
advection of texture properties for static scenes. 
Special attention must be paid in order to handle flow 
at geometric boundaries of the surface.Figure shows 
an overview of the original IBFV process. During the 
visualization, each frame is advected, rendered, and 
blended in with a background image. If we look 
carefully at the distort phase of the algorithm, we 
notice that there is nothing to stop the image from 
being advected outside of the physical boundary of the 
geometry. While this is not a problem when the 
geometry covers the entire screen, this can lead to 
artifacts for geometries from CFD, especially in the 
case of boundaries with a non-zero outbound flow, 
e.g., flow outlets. 

To address this problem we borrow a notion from LEA 
that treats non-rectangular flow domains, namely, the 

use of backward coordinate integration. Using 
backward integration, equation becomes: 

Pk-1 = pk - vp(pk-1; t)∆t     

In this case the texture coordinates located at the 
backward distorted mesh positions are mapped to the 
regular, rectilinear mesh vertices. Backward integration 
does not allow advection of image properties past the 
geometric boundaries. 

 

Figure : An overview of the original image based 
flow visualization 

EDGE DETECTION AND BLENDING 

While we gain many advantages by decoupling the 
image advection process with the 3D surface 
geometry, artifacts can result, especially in the case 
of geometries with sharp edges. If we look carefully at 
the result of advecting texture properties in image 
space, we notice that in some cases a visual flow 
continuity is introduced where it may be undesirable. 
A sample case is shown in Figure. A portion of the 3D 
geometry, shown colored, is much less visible after 
the projection onto the image plane. If the flow texture 
properties are advected across this edge in image 
space, also shown colored, an artificial continuity 
results. To handle this, we incorporate a geometric 
edge detection process into the algorithm. During the 
image integration computation, we compare spatially 
adjacent depth values during one integration and 
advection step. We compare the associated depth 
values, zk-1 and zk in world space of pk- 1 and pk 
from equation , respectively. 
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Figure : When a 3D surface geometry (left) is 
projected, continuity is created in image space 
(right). If the flow aligned texture properties are 
advected across this edge, an artificial flow 
continuity may result. 

If | zk - 1 -  zk |  > E | pk- 1 – pk |    

where zk is a threshold value, then we identify an 
edge. All positions, p, for which equation is true, are 
classified as edge crossing start points. Special 
treatment must be given when advecting texture 
properties from these points. This process does not 
detect all geometric edges, only those edges across 
which flow texture properties should not be advected. 

Figure top, middle shows one set of edges from the 
detection process. The geometric edges are identified 
and stored during the dynamic visualization case and 
additional blending is applied. During the edge 
blending phase of the algorithm we introduce 
discontinuities in the texture aligned with the geometric 
discontinuities from the surface, i.e., gray values are 
blended in at the edges. This has the effect of adding 
a gray scale phase shift to the pixel values already 
blended. This could obviously be handled in different 
ways, e.g., choosing a random noise value to advect 
or inverting the noise value already present. Some 
results of the edge detection and blending phase are 
illustrated in Figure . In our data sets an " of 1-2% of 
depth buffer is practical. However, the users may set 
their own value if fine tuning of the visualization is 
needed. The same edge detection and blending 
benefits incoming boundary flow. Also an artifact of the 
IBFV algorithm, geometric boundaries with incoming 
flow may appear dimmer than the rest of the geometry. 

This is a result of the noise injection and blending 
process described in Section . In short, the 
background color shows through more in areas of 
incoming flow because not as much noise has been 
blended in these areas. Figure top, shows a 2D slice 
through a 3D mesh from a CFD simulation with 
incoming boundary flow coming in through the narrow 
inlet from the right. Note that the edge of the inlet 
appears dim. Figure bottom, shows the same slice with 
edge blending turned on. The boundary artifacts of the 
noise injection and blending process are no longer a 
distraction. Edge detection and blending also plays in 
important role while an object is rotating. Without 
special treatment, contours in image space become 
blurred when different portions of a surface geometry 
overlap, such as when blood vessels in Figure overlap 
during rotation. 

NOISE BLENDING 

By reducing the image generation process back to two 
dimensions, the noise injection and blending phase 
falls in line with the original IBFV technique, namely, 
an image, F, is related to a previous image, 

 

 

Figure : A close-up example of geometric edge 
detection: on the left side, geometric edge 
detection is disabled, on the right side enabled. 

 

 

Figure : Here we see a 2D slice through a 3D 
geometry from a CFD simulation. (top) With no 
edge blending, the background color shows 
through boundary areas with incoming flow. 
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(bottom). With edge blending, these artifacts are 
no longer a distraction. 

G, by [164]: 

F(p; k) = ∞∑ k-1 Xi =0 (1 - ∞)
t
 G(pk- i)  

where p represents a pathline,  ∞ defines a blending 
coefficient, and k represents time as a frame number. 
Thus a point, pk, of an image Fk, is the result of a 
convolution of a series of previous images, G(x; i), 
along the pathline through pk, with an decay filter. The 
blended noise images have both spatial and temporal 
characteristics. In the spatial domain, a single noise 
image, g(x), is described as a linearly interpolated 
sequence of n random values, Gi, in the range , 

g(x) =∑hs(x - is)Gi mod n     

where the spacing, s, between noise samples is 
generally greater than or equal to the distance 
traversed by an image property in one advection step 
and hs represents a triangular black and white pulse 
function. Here x represents a location in the flow 
domain. In practice, we give the user control of s, 
resulting in multi-frequency texture resolutions in the 
spacial domain. The background textures used for 
blending also vary in time. In the temporal domain, 
each point, Gi in the background texture, periodically 
increases and decays according to a profile, w(t), e.g., 

Gi;k = w((k/M + φi) mod 1)    

where φi represents a random phase, drawn from the 
interval [0,1],M is the total number of background 
noise images used, and where w(t) is defined for all 
time steps. We use a square wave profile, i.e., w(t) = 1 
if t < 1=2 and 0 otherwise. In our application, the user 
has the option of varying M. Smaller values ofM result 
in higher frequency noise in the temporal domain 
whereas higher values M result in a lower temporal 
frequency. Figure shows a sample blended image and 
Figure shows a sample noise image. 

 IMAGE OVERLAY APPLICATION 

The rendering of the advected image and the noise 
blending may be followed by an optional image 
overlay. An overlay enhances the resulting texture-
based representation of surface flow by applying color, 
shading, or any attribute mapped to color. In 
implementation, we generate the image overlay 
following the construction of the velocity image. This 
overlay may render any CFD simulation attribute 
mapped to hue. The overlay is constructed once for 
each static scene and applied after the image 
advection, edge blending, and noise blending phases. 
Since the image advection exploits frame-to-frame 
coherency, the overlay must be applied after the 
advection in order to prevent the surface itself from 

being smeared. Also worthy of mention, is that the 
opacity value of the image overlay is a free parameter 
we provide to the user. 

IMPLEMENTATION 

In this section we consider some aspects of the 
algorithm not previously discussed which are important 
for implementation. Our implementation is based on 
the highly portable OpenGL library. 

TEXTURE CLIPPING 

In our application, the resolution of the quadrilateral 
mesh used to warp the image can be specified by the 
user. The user may specify a coarse resolution mesh, 
e.g., 128 x 128, for faster performance or a fine 
resolution mesh, e.g., 512 x 512, for higher accuracy. 
However, if the resolution of the advection mesh is 
too coarse in image space, artifacts begin to appear. 
Figure illustrates these artifacts zoomed in on the 
edge of a surface. In order to minimize the jagged 
edges created by coarse resolution texture 
quadrilaterals, we apply a texture clipping function. 
Subsets of textured quadrilateral that do not cover the 
surface are clipped from the visualization as shown in 
Figure. This can be implemented simply with the 
image overlay by maximizing the opacity wherever 
the depth buffer value is maximized, i.e., wherever 
there is a great depth. 

VELOCITY MASK 

In order to dim high frequency noise in low velocity 
regions, the user also has the option of applying a 
velocity mask. We adopt the velocity mask of Jobard 
et al. [63] for our purposes here, namely: 

∞ = 1 - (1 - v)
m

     

where ∞ decreases as a function of velocity 
magnitude. In our case, the image overlay becomes 
more opaque in regions of low velocity and more 
transparent in areas of high velocity. With the velocity 
mask 
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Figure :The result of, left, a coarse resolution 
advection mesh with artifacts and, right, the 
application of texture clipping. The resolution of 
the advection mesh shown on the left is 32 x 32 for 
illustration. 

enabled, the viewer’s attention is drawn away from 
areas of stagnant flow, and towards areas of high flow 
velocity. We note that in the context of CFD simulation 
data, engineers are often very concerned about areas 
of stagnant flow. In the case of a cooling jacket, 
stagnant flow may represent a region of the geometry 
where the temperature is too high, possibly leading to 
boiling conditions thus reducing the effectiveness of 
the cooling jacket itself. Therefore, in our case the 
engineers may disable the velocity mask or use the 
velocity mask to highlight areas of flow, e.g., make the 
hue brighter in areas of low velocity. 

PERFORMANCE AND RESULTS 

Our visualization technique is applied primarily to 
large, highly irregular, adaptive resolution meshes 
commonly resulting from computational fluid dynamics 
simulations.The ideal intake manifold supplies an 
equal amount of fluid flow to each piston valve. 
Visualizing the flow at the surface gives the engineer 
insight into any imbalances between the inlet pipes, in 
this case, the long narrow pipes of the geometry. 
Figure shows our method applied to a surface of an 
intake port mesh composed of 221K polygons. The 
intake port mesh is composed of highly adaptive 
resolution surface polygons and for which no global 
parameterization is readily available. The method 
described here allows the user to zoom in at arbitrary 
view points always maintaining a high spatial 
resolution visualization. The algorithm applies equally 
well to meshes with time-dependent geometry and 
topology. Figure shows the surface of a piston cylinder 
with the piston head defining the bottom of the surface. 
The method here enables the visualization of fuel 
intake as the piston head slides down the cylinder. The 
resulting flow visualization has a smooth spatio-
temporal coherency. Our algorithm also has 
applications in the field of medicine. Figure shows the 
circulation of blood at the junction of  blood vessels. 

An abnormal cavity has developed that may hinder the 
optimal distribution of blood. 


