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INTRODUCTION  

The generation of Association rule mining is to 
discover the association rules. The frequent itemsets 
found in the previous step are used to generate 
association rules. All the permutations and 
combinations of the items present in the frequent 
itemsets are considered as candidates for strong rules. 
A lot of rules will be generated in this way. A strong 
rule is one that has minimum confidence which is 
computed by the Formula The main difference 
between Apriori and IAR algorithm is that IAR 
algorithm takes user’s attribute preference for the 
resulting rules. Thereafter, the IAR searches for rules 
that contain the user specified attributes on the L.H.S. 
and derive other attributes in the database. If such a 
rule possesses high confidence level then it could be 
valuable in the marketing context for the organisation. 
In this way a lot of time can be saved and the user 
trusts more in the discovered rules. 

THE EXPERIMENT AND RESULTS 

For the purpose of performance evaluation of IAR 
algorithm in discovering frequent itemsets, both Apriori 
and IAR have been run on the same platform under 
same conditions. Various parameters were computed 
for the purpose of comparison and the results have 
been shown in Tables 5.4 and 5.5, and Figure 5.4. The 
experimental runs have been conducted with two 
support levels and different sized datasets. It has been 
found that the IAR algorithm always takes less time 
and storage space than the standard Apriori. The 
interesting information can be mined in a shorter time. 
The test dataset has 7 attributes. The data was 
generated by artificial transactions to evaluate the 
performance of the algorithm over a range of data 
characteristics. The attributes are numbered starting 
from 1 and going in sequence. Any database of real 
world can be used with this algorithm by converting the 
attribute names to 1, 2, 3 and so on. 

The algorithms use T-tree
1
 data structure to store 

frequent item set information. The storage requirement 
for each node (representing a frequent item set) in the 
T-tree is 12 bytes i.e.  a) reference to T-tree node 
structure (4 Bytes), b) support count field in T-tree 

node structure (4 Bytes) and c) reference to child 
array field in T-tree node structure (4 Bytes). 

Both the algorithms were compared with respect to 
the number of nodes in the T-tree structure, updates 
required to in T-tree to find large itemsets and the 
storage of T-tree in bytes. Table 5.4 and Table 5.5 
show the comparative relationship of the various 
parameters as computed in Apriori and IAR 
algorithms with different data sizes. However the 
most important factor is time. IAR always takes less 
time than Apriori. The time comparison of both the 
algorithms with support level 20% and 30% is shown 
in Figure 1 and Figure 2. These figures clearly 
indicate the time performance of IAR over the 
standard Apriori algorithm. It must be noted that the 
time taken and other parameters may differ for 
different runs as the data is generated randomly. Also 
the behaviour of IAR need not be the same for 
different attributes specified by the user. But it always 
takes less time and storage than Apriori. It must also 
be noted that IAR does not do exhaustive search 
instead it finds association rule containing the 
attributes specification given by the user. 

Table 1: Values of parameters with support level 
20%. 

 

Table 2: Values of parameters with support level 
30%. 
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Figure 1: Temporal performance of Apriori (red - 
upper) and IAR (blue – lower) with Support level 20%. 

 

Figure 2: Temporal performance of Apriori (red - 
upper) and IAR (blue – lower) with Support level 30%. 

CONCLUSION 

Among various data mining techniques, rule based 
techniques are most appropriate for integrating human 
opinions, and human thoughts can be converted into 
rules relatively more easily. User’s suggestions and 
demands can be incorporated in the process to 
transfer domain knowledge either by providing some 

implied information to instruct the mining process or by 
being merged into the results. This results in less and 
shorter iterations within the knowledge discovery loop. 

The IAR algorithm presented is a variation of standard 
Apriori algorithm, and it was chosen to include user’s 
role in finding interesting association among items in a 
database. The two algorithms are compared using 
different data sizes and support levels. The results 
show that human involvement is a promising field in 
data mining. The IAR algorithm always outperforms 
Apriori and the performance enhances as the data size 
increases. It can conclusively be made out that the 
domain user’s knowledge may contribute a lot in the 
discovery of sequences and patterns of interest.  
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