Study on Search and Control Strategies

Exploring search techniques in AI programs

by Lokesh Kumar Kalaravana*,

- Published in Journal of Advances in Science and Technology, E-ISSN: 2230-9659

Volume 4, Issue No. 7, Nov 2012, Pages 0 - 0 (0)

Published by: Ignited Minds Journals


ABSTRACT

Search is one of the operational tasks that characterizeAI programs best. Almost every AI program depends on a search procedure toperform its prescribed functions. Problems are typically defined in terms ofstates, and solutions correspond to goal states. Solving a problem then amountsto searching through the different states until one or more of the goal statesare found. In this chapter we investigate search techniques that will bereferred to often in subsequent chapters.

KEYWORD

Search, Control Strategies, AI programs, search procedure, states, goal states

  • c01.qxd 10/21/2005 7:38 AM Page 27 Block, H. D. (1970). “A Review of `Perceptrons: An Introduction to Computational Geometry,’”
  • Information and Control, Vol. 17:5, pp. 501–522.
  • Block, H. D., B. W. Knight, and F. Rosenblatt (1962). “Analysis of a Four Layer Series Coupled Perceptron,” Rev. Mod. Phys., Vol. 34, pp. 135–142.
  • Blume, H. (1998). “The Digital Philosopher,” The Atlantic Online, Dec. 9.
  • Buchanan, B. G., and E. H. Shortliffe (1985). Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Reading, MA: Addison-Wesley.
  • Campbell, A. N., V. F. Hollister, R. O. Duda, and P. E. Hart (1982). “Recognition of a
  • Hidden Mineral Deposit by an Artificial Intelligence Program,” Science, Vol. 217, pp.

927–929.

  • Cannon, W. D. (1932). The Wisdom of the Body. New York: Norton and Company.
  • Carne, E. B. (1965). Artificial Intelligence Techniques. Washington, DC: Spartan Books.
  • Cerf, C., and V. Navasky (1984). The Experts Speak: The Definitive Compendium of Authoritative Misinformation. New York: Pantheon Books.
  • Charniak, E., and D. V. McDermott (1985). Introduction to Artificial Intelligence. Reading, MA: Addison-Wesley.

 Clark, D. (1997). “Deep Thoughts on Deep Blue,” IEEE Expert, Vol. 12:4, p. 31.

Available online at www.ignited.in Page 4

to an Article on Babbage’s Analytical Engine.”

  • In Scientific Memoirs, Vol. 3, edited by R. Taylor, pp. 691–731.
  • Covington, M. A., D. Nute, and A. Vellino (1988). Prolog Programming in Depth. Glenview,
  • IL: Scott, Foresman. Cybenko, G. (1989). “Approximations by Superpositions of a Sigmoidal Function,” Math. Contr. Signals, Syst., Vol. 2, pp. 303–314.
  • Dreyfus, H., and S. Dreyfus (1984). “Mindless Machines: Computers Don’t Think Like Experts, and Never Will,” The Sciences, November/December, pp. 18–22.
  • Dreyfus, H., and S. Dreyfus (1986). “Why Computers May Never Think Like People,” Tech. Review, January, pp. 42–61.
  • Dubois, D., and H. Prade (1982). “A Class of Fuzzy Measures Based on Triangular
  • Norms–A General Framework for the Combination of Uncertain Information” Int. J. of General Systems, Vol. 8:1.
  • Duda, R., P. E. Hart, N. J. Nilsson, P. Barrett, J. G. Gaschnig, K. Konolige, R. Reboh, and J. Slocum (1978). “Development of the PROSPECTOR Consultation System for Mineral Exploration,” SRI Report, Stanford Research Institute, Menlo Park, CA.
  • Feigenbaum, E. A., B. G. Buchanan, and J. Lederberg (1971). “On Generality and Problem Solving: A Case Study Involving the DENDRAL Program.” In Machine Intelligence 6, edited by B. Meltzer and D. Michie. New York: American Elsevier, pp. 165–190.
  • Fogel, L. J. (1962). “Autonomous Automata,” Industrial Research, Vol. 4, pp. 14–19.
  • Fogel, L. J. (1964). “On the Organization of Intellect.” Ph.D. diss., UCLA.
  • Fogel, L. J., A. J. Owens, and M. J. Walsh (1966). Artificial Intelligence through Simulated Evolution. New York: John Wiley.
  • Fogel, D. B. (2002). Blondie24: Playing at the Edge of AI, San Francisco: CA, Morgan Kaufmann.

Logical Foundations of Artificial Intelligence. Los Altos, CA: Morgan Kaufmann.

  • 28 DEFINING ARTIFICIAL INTELLIGENCE c01.qxd 10/21/2005 7:38 AM Page 28 Giarratano, J. C. (1998). Expert Systems: Principles and Programming, Brooks Cole, NY.
  • Gould, J. L., and C. G. Gould (1985). “An Animal’s Education: How Comes the Mind to be Furnished?” The Sciences, Vol. 25:4, pp. 24–31.
  • Greenblatt, R., D. Eastlake, and S. Crocker (1967). “The Greenblatt Chess Program,” FJCC, Vol. 31, pp. 801–810.
  • Grossberg, S. (1976). “Adaptive Pattern Classification and Universal Recoding: Part I. Parallel Development and Coding of Neural Feature Detectors,” Biological Cybernetics, Vol. 23, pp. 121–134. Grossberg, S. (1982). Studies of Mind and Brain. Dordrecht, Holland: Reidel.
  • Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. New York: Macmillan. Hebb, D. O. (1949). The Organization of Behavior. New York: Wiley.
  • Hecht-Nielsen, R. (1990). Neurocomputing. Reading, MA: Addison-Wesley.
  • Hoffman, A. (1989). Arguments on Evolution:A Paleontologist’s Perspective. New York: Oxford Univ. Press.
  • Hofstadter, D. R. (1985). Metamagical Themas: Questing for the Essence of Mind and Pattern. New York: Basic Books.
  • Hopfield, J. J. (1982). “Neural Networks and Physical Systems with Emergent Collective Computational Abilities,” Proc. Nat. Acad. of Sciences, Vol. 79, pp. 2554–2558.
  • Hopfield, J. J., and D. Tank (1985). “‘Neural’ Computation of Decision in Optimization Problems,” Biological Cybernetics, Vol. 52, pp. 141–152.
  • Hornik, K., M. Stinchcombe, and H. White (1989). “Multilayer Feedforward Networks Are Universal Approximators,” Neural Networks, Vol. 2, pp. 359–366.

 Jackson, P. C. (1985). Introduction to Artificial Intelligence, 2nd ed. New York: Dover.

Available online at www.ignited.in Page 5

Raton, FL: CRC Press.

  • Kasabov, N. K. (1996). Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, MIT Press, Cambridge, MA.
  • Keller, H. B. (1961). “Finite Automata, Pattern Recognition and Perceptrons,” Journal of Assoc. Comput. Mach., Vol. 8, pp. 1–20.
  • Kesler, C. (1961). “Preliminary Experiments on Perceptron Applications to Bubble Chamber Event Recognition.” Cognitive Systems Research Program, Rep. No. 1, Cornell University, Ithaca, NY.
  • Kohonen, T. (1984). Self-Organization and Associative Memory. Berlin: Springer-Verlag.
  • Lenat, D. B. (1983). “EURISKO: A Program that Learns New Heuristics and Domain Concepts,” Artificial Intelligence, Vol. 21, pp. 61–98.
  • Levine, D. S. (1991). Introduction to Neural and Cognitive Modeling. Hillsdale, NJ: Lawrence Erlbaum.
  • Levy, D. N. L., and M. Newborn (1991). How Computers Play Chess. New York: Computer Science Press.
  • Lindsay, R. K. (1968). “Artificial Evolution of Intelligence,” Contemp. Psych., Vol. 13:3, pp. 113–116.
  • Lindsay, R. K., B. G. Buchanan, E. A. Feigenbaum, and J. Lederberg (1980). Applications of Artificial Intelligence for Organic Chemistry: The DENDRAL Project. New York: Mc- Graw-Hill.
  • Manuel, T. L. (2003). “Creating a Robot Culture: An Interview with Luc Steels,” IEEE Intelligent Systems Magazine, May/June, pp. 59–61.
  • Maynard Smith, J. and E. Szathmáry (1999). The Origins of Life: From the Birth of Life to the Origin of Language, Oxford University Press, New York.
  • Mayr, E. (1988). Toward a New Philosophy of Biology: Observations of an Evolutionist. Cambridge, MA: Belknap Press.
  • McCarthy, J., P. J. Abrahams, D. J. Edwards, P. T. Hart, and M. I. Levin (1962). LISP 1.5

Press.

  • McCarthy, J. (1997). “AI as Sport,” Science, Vol. 276, pp. 1518–1519.
  • McCulloch, W. S., and W. Pitts (1943). “A Logical Calculus of the Ideas Immanent in Nervous Activity,” Bull. Math. Biophysics, Vol. 5, pp. 115–133.
  • Mead, C. (1989). Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley.