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In the previous section, we have outlined the aims and 
some techniques behind the generation of irregular 
grids. We now turn our attention to methods which aim 
to move the mesh in time to solve non-steady 
differential equations. Whilst retaining the properties 
(and hence the numerical benefits) of the ideas 
presented above. We shall make constant reference to 
the techniques in Section 2.1, so it makes sense to 
follow the same order of events. starting with the use 
of the equidistribution principle in deriving moving 
mesh methods in one dimension. 

An early incorporation of the equidistribution idea into 
a moving mesh method is outlined by Petzold. Here a 
natural extension of the interleaving numerical solution 
approach for a stationary, adaptive grid is presented. 
Since the solution of the problem now develops with 
time, the equidistribution part of the interleaving 
solution approach is undertaken at intervals, usually 
chosen by some predetermined error measure, during 
the forward integration in time. In other words, at 
certain times throughout the numerical solution of the 
equation, the grid is reequidistributed, hence moving 
the nodes throughout time, the solution on the new 
grid being found via some interpolation process. In a 
slight variation on this technique Blom et al used a 
predictive step, reequidistribute the grid using the 
prediction and then update the solution on the new 
grid. The update step is written in a Lagrangian form, 
involving the movement of the nodes in the 
redistribution, hence no interpolation step is required. 
The Blom approach bridges the gap between the 
static, regridding technique of Petzold and more 
dynamic traditional moving mesh methods. The major 
difference between the two is the interpretation of 
mesh speeds included within the solution procedure. 
We continue this theme further and explore the various 
forms of this continuously moving mesh idea. 

In contrast to the regridding idea, an early dynamic 
moving mesh technique was devised by Dor & Drury. 
Here a separate equation for mesh speeds is 
developed via a function R to control mesh resolution 
which acts in the same way as a monitor function 
(despite no formal mention of equidistribution ideas). A 

simple relation between the speeds of the points  
and R is solved in conjunction with the underlying 

PDE. Other early additional moving mesh equations 
include the work by Adjerid & Flaherty who used a 
moving mesh equation within a finite, element 
framework to equidistribute the local discretisation 
error within the scheme. Petzold followed the 
regridding approach with a more dynamic moving 
mesh method, the idea here being that using 
transformed pseudo-Lagrangian moving mesh 
coordinates, mesh speeds can be chosen so as to 
minimise the movement of the mesh in the 
transformed variables, so the solution in these 
coordinates is changing as slowly as possible for an 
easier numerical solution. 

White followed earlier grid generation work in one-
dimension by using a moving mesh method based 
upon the transformation to arc-length type 
coordinates. Applications of early moving mesh 
methods include the work by Larrouturou working on 
a flame propagation problem, a single mesh speed 
being derived for the entire grid, this velocity chosen 
to preserve thermal energy in the solution, the entire 
grid is then moved as a rigid body. For the reader's 
interest, a review of some of the earlier moving mesh 
methods in one-dimension can be found in Hawken 
et al . 

We now turn our attention to the work of Huang Ren 
and Russell. In contrast to the work by Dorfi & Drury 
the moving mesh equation is derived directly from the 
equidistribution principle.  In several moving mesh 
partial differential equations (MMPDE's) are derived 
in this manner, with the aims of the resulting 
algorithm being simple, easy to program and 
relatively insensitive to the hoice of user-defined 
parameters. In all seven of these MMPDE's are 
constructed using three different approaches, the first 
two of which are motivated by equidistribution. Using 
the one-dimensional computational and physical 
coordinate systems as described in Section 2.1 two 
quasistatic equidistribution principles (QSEP's), are 
obtained by differentiating the integral form of the 

equidistribution principle (2.3) with respect to  
once and twice respectively. 



 

 

Ashok Kumar Yadav 

w
w

w
.i

g
n

it
e

d
.i
n

 

2 

 

 Cost Subject to the Expected Number of Failures Remaining Constraint 

 

and 

 

To introduce node movement into the picture, time 
differentiation is undertaken. Several mesh movement 
equations have been produced by, for example 
Anderson  Hindman & Spencer and Ren & Russell the 
former two papers being early attempts with the 
transformation between physical and computational 
space, first in one and later in two dimensions 
 owever some of these earlier forms include 
time differentiation of the integral quantity 

 

Huang, Ren & Russell state, without supporting 

argument, that the quantity  or ts time 
derivatives are too complicated to include in actual 
computation. However, by first differentiating the 
original equidistribution principle with time and then 
with,  twice we obtain 

 

which can be written as (MMPDE1) 

 

 

so giving a moving mesh equation without reference to 

 In the same paper an alternative set of moving 
mesh equations, MMPDE's 2-4 are derived by 
considering (2.21) and requiring that the mesh satisfy 

the condition at the later time (where 

) instead of at time t i.e. 

 

This equation is thought to be a strong enough 
condition to regularize the mesh movement by Huang 
et al. Substituting the expansions 

 

 

into (2.2) and dropping higher order terms gives 
MMPDE 2 (2.23) which in fact is MMPDE1 with an 
additional 'correction' term 

 

The extra term is a measure of how well the current 
grid is equidistributed and hence MMPDE 2 moves 
the grid towards an equidistributed state even when 
M is independent of t. For this reason, terms 

involving  are less important for MMPDE 2 than 
MMPDE 1 and disregarding these terms leads to 
MMPDE's 3 and  respectively, i.e. 

 

and 

 

The remaining MMPDE's (5-7) are devised by 
considering attraction and repulsion pseudo-forces 
between nodes. Here the mesh movement is 
specifically motivated by taking the monitor to be 
some error measure, so nodes are attracted together 
when the error is larger than average and repelled 
when the measure is below average. The error is 

then expressed as an integral over each cell, , 
usually taking the form 

 

MMPDE's (5-7) stem from this relation and all involve 
the correction term mentioned above. which seems 
to be a key term as it can determine the time-scale 
for the mesh movement and hence can be adapted 
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to suit the problem in hand. Moreover since the 
correction term can be derived from the 
equidistribution idea, its inclusion in the latter mesh 
equations suggests that the error is evenly distributed 
over the mesh and the equidistribution and 
attraction/repulsion ideas are therefore thought to be 
closely related. Huang, Ren & Russell also provide 
theoretical analysis suggesting that the MMPDE's 
cannot produce instances where nodes cross paths 
when the MMPDE is solved exactly, indicating stability 
of the resulting meshes. The stability analysis follows 
early work by Flaherty et al. In particular it is noted that 
for MMPDE 1 the mesh would be stable if the measure 

 

were to remain bounded. However for most choices of 
M, L(t) is likely to increase, Li et al, went on to discuss 
the stability of such moving mesh systems in greater 
detail. 

The resulting equations (MMPDE's 1-7) have spawned 
a variety of work in various applications, sometimes 
with a common modification, that being the spatial 
smoothing of the monitor function M. Dorfi & Drury and 
Furzeland et al, came to the conclusions in their early 
moving mesh work that when using finite, difference 
schemes to approximate derivative terms, in order to 
obtain 'reasonable' accuracy the mesh should be, in 
some sense, smoothed. Verwer et al proved that 
smoothing the mesh is equivalent to smoothing the 
monitor function over the grid Motivated by this work, 
Huang, Ren & Russell  use MMPDE's (3-7) with a 

smoothed monitor function  defined at each node 
by 

 

Where  is a smoothing parameter and p is a non-
negative integer referred to as the smoothing index 
which determines the range of the smoothing. These 
ideas provide a valuable tool in higher dimensions, 
since using a locally smoothed monitor function is 
considerably easier than smoothing the entire mesh 
separately Moreover it is noted in that MMPDE's 3 & 4 
permit a possible extension to multidimensions. 

Mackenzie and Stockie et al have both applied the 
smoothed moving mesh equations to PDEs in one-
dimension and later to systems of hyperbolic 

conservation laws, where monitors were not only 
smoothed but combined to provide a moving grid on 
which to simulate the development of several time 
dependent variables. Mackenzie & Robertsonalso 
used a mesh equation based upon equidistribution 
applied to a problem involving a phase change. Here a 
monitor based upon the asymptotic behaviour of the 
problem was used, clustering nodes around the 
moving interface, whilst the inclusion of a constant 
term also allowed sucient nodes to be placed away 
from the region. Further applications of the MMPDE's 
(1-7) include work by Qiu & Sloan who applied 
MMPDE 6 with the outlined technique of smoothing 
the monitor to Fisher's Equation. Interestingly 
enough, a new monitor was derived for specific use 
with reaction- diffusion problems (2.26) after arc-
length and curvature monitors proved to be 
unsuccessful, this was 

 

where  and a are user defined parameters. 

Huang and Russell also investigated the addition of 
artificial diffusion terms to the monitor as a means of 
smoothing, the resulting method satisfying a mesh 
crossing condition and allowing for possible extension 
to higher spatial dimensions. 

A so-called Moving Mesh DifferentialAlgebraic 
Equation (MMDAE) is developed by Mulholland, Qiu 
& Sloan Instead of using the an MMPDE, the mesh 
movement is prescribed by a QSEP (2.20 & 2.21) 
written in terms of an algebraic equation involving the 
stationary grid points and the monitor function M. In 
fact the algebraic relation is the equidistribution 
relation written previously in Section 2.1 equation 
(2.6) This is coupled with the moving grid Lagrangian 
form of the underlying PDE and integrated forward in 
time using a first-order backward Euler method (used 
since these systems tend to be stiff). In this technique 
is used in conjunction with a pseudo-spectral 
processing of the solution of hyperbolic problems, Qiu 
& Sloan continue the work, comparing the method 
and in particular the stability with the established 
MMPDE 5 of Huang et al. Of particular interest is the 
stability of the discrete solution of the steadystate 
solution to Burgers, equation by examining possible 
steady solutions arising from the two adaptive 
discretisations of the unsteady problem. 

We now move on to moving mesh methods in higher 
dimensions. In the previous section we outlined a 
class of stationary grid adaption methods based upon 
minimising a mesh generation functional. As with the 
moving-mesh techniques in one dimension, we 
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 Cost Subject to the Expected Number of Failures Remaining Constraint 

introduce mesh speeds into such a grid adaption 
method so as to preserve the properties of the grid as 
it moves in time. A popular way to introduce mesh 
speeds into the mesh functional approach is by use of 
the so, called gradient flow equations. Following the 

approach of Huang & Russell a functional  

is minimised over the computational domain . One 
way to minimise I is to follow the steepest descent 
direction given by the first derivative of I. The following 
'gradient flow' equations define a flow which converge 

to the equilibrium state at  

 

In practice a modied version of these equations is 
used in with the inclusion f the familiar correction term 

 and the introduction of P, an operator on the 
underlying function space. 

 

The extra term P is used to choose more suitable 
directions than that of steepest descent with the terms 
allowing the user to choose a suitable time scale for 
the problem. It has already been noted in Section 2.1 
that the functional approach in one-dimension can be 
shown to be equivalent to the equidistribution principle. 
Moreover the approach here can be shown to be 
similar to using MMPDE 5 being based on the 
attracting and repellent forces of the monitor function. 
Indeed Beckett et al used a similar version of the 
monitor outlined previously (2.26) in conjunction with a 
onedimensional analogue of (2.29) for the solution of 
Burgers' equation. More recently MMPDE 5 has been 
used in two dimensions as part of an adaptive finite 
element method by Cao et al for the solution of a 
combustion problem consisting of coupled nonlinear 
reaction-diffusion equations. 

Huang & Russell give multi-dimensional 
generalisations using this methodology for MMPDE's 4 
and 6 Using this approach and the general grid 
generation functional (2.16), a suitable P is given in 
terms of the determinants of the two monitor matrices, 

i.e. , 
giving the resulting MMPDE 

 

or 

 

As with solving for a stationary mesh, the actual 
computations are carried out after interchanging 
dependent and independent variables, giving 

 

where J is the Jacobian of the coordinate transform. 

Given this general framework, equivalentMMPDE's 
can be constructed using the various specific 
functionals described in Section 2.1 Dirichlet 
boundary conditions are preferred for the solution of 
(2.29) as this yields a unique solution, but for many 
problems this is not applicable since the boundary 
may not be stationary. Indeed, in some cases it is 
useful to moves nodes around the fixed boundary, 
for which many techniques are under investigation, 
the most popular being preserving a onedimensional 
arc-length equidistribution of nodes on the boundary 
(see Huang & Russell, Beckett et al). 

Huang and Russell, outline a familiar interleaving 
approach for the solution of the higher dimensional 
MMPDE combined with the underlying physical PDE 
as follows : 

 Calculate the monitor functions G1 and G2 on 
the current mesh. 

 Update the mesh at time  by 
integrating the MMMPDE(2.29) keeping G1 
and G2 constant. 

 Integrate the physical PDE to get the 

solution at time  using the mesh 
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and mesh speed 

 

 Choose a value of   for the next 
time step from the physical PDE. 

As with their work in one-dimension. Huang, Ren & 
Russell suggest that the time correction term  is preset 
by the user or determined by the development of the 
solution. However the choice of this value in one-
dimension is relatively insen, sitive and it is thought to 
be so in higher dimensions also. Central finite 
difference discretisations are used by Huang & Russell 
along with a simple rectangular uniform reference 
mesh for the computational space. Again, extending 
the work carried out in one-dimension, the monitor is 
smoothed locally. 

On reflection, the functional framework for 
multidimensional moving mesh methods gathers 
together all of the work described, both in grid 
adaption and one-dimensional moving grid techniques, 
since the strict equidistribution ideas in one-dimension 
can be written in terms of a functional and the moving 
mesh methods in higher dimensions are derived from 
a functional approach to grid adaption. 

As an interesting aside, work by 

considers moving mesh 
methods from a more practical aspect. The authors 
suggest that many of the moving mesh algorithms 
before them induce error by not satisfying exactly any 
relevant conservation laws. Work is continued mesh 
movement equations are derived for the solution of the 
Navier Stokes equations from a general scalar quantity 
conservation law. The fact that relevant physical 
quantities are conserved almost 'by construction' in the 
method is considered to be of utmost importance and 
is the driving force behind the moving grid. 

Whichever approach is undertaken, a good 
understanding of the numerical techniques alone may 
not be good enough for the solution of some problems. 
We shall continue in the next section by introducing 
recent work which combines moving mesh methods 
and self-similar solution techniques, which suggests 
reasonable choices of monitor functions for certain 
problems. In particular we shall consider application to 
the solution of the PME, which we now describe in 
detail. 
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