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INTRODUCTION  

A spherical code is a nonempty finite subset X C S(E). 
Its angle set is defined as 

 

In  terms  of the  Coding  Theory  the  set  across A(X )  
is the  distance set. The following result  is purely  
combinatoric because X is arbitrary. Lemma is the 
main key to it. 

THEOREM .  Let X be a spherical code, |X | = n,  |A(X 
)| = s. Then 

 

Proof. Consider the polynomial F; deg F = s; such that 
F|A(X) = 0. Then F(1) ≠  0 since 

1 €A(X): Now we apply Lemma . The identity turns into 

F(1) ∑ | λ(x)|
2 
= ∑ cm,k (F) ∑ |uik(x)|

2 

where 

uik = ∑ Ski (x) λ(x) 

are linear forms of the vectors [λ (x)]x ∈ X: The left 

expression in shows that the rank of the Hermitian 
quadratic form is equal to n. The right expression 
shows that the same rank does not exceed the total 
number of summands there, 

n  <= ∑  hm,k 

k=0 

n < = dim Pol(E) 

Now we pass to the special spherical codes which 
are so nicely arranged on the sphere that the 
integration over the sphere is equivalent to a 
weighted averaging over a code. Certainly, this is 
possible only for finite-dimensional spaces of 
integrands, say, for Pol(E; d); Pold(E), etc., but with 
an upper bound for d. 

DEFINITION : A spherical cubature formula of index 
d is an identity 

∫ Ødq = ∫ Ø d σ , Ø ∈ Pol (E;d) 

where σ  is the normalized Lebesgue measure on the 
sphere S(E) and q is a normalized finitely supported 
measure, 

suppq = {xk}1 ⊂ S(E) 

∫ Ødq = ∫suppq Ø dq = ∑ Ø(x) q(x) = ∑x Ø(x) q(x) 

The points x1; : : : ; xn are called the nodes and its 
measures qk = q(xk); 1<= k<= n; are called the 
weights. The set suppq is called the support of the 
spherical cubature formula. 

REMARK : Formula  with even d automatically 
implies that q is normalized since 1 Pol(E; d) in this 
case. 

The identity can be also rewritten as 

∑Ø(xk) qk = ∫ Ø dσ, Ø∈ Pol (E;d) 

where qk > 0; 1<= k<= n: 

A spherical cubature formula of index d in the case of 
equal weights, i.e with 

Q1 = qn = 1/n 

is called a Chebyshev type cubature formula. Its 
support is called a spherical design of index d, a term 
from the Algebraic Combinatorics. Thus, the left 
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integral is equal to the arithmetic mean of Á over any 
spherical design X of index d, 

1/ |X| ∑  Ø(x) =  ∫ Ø dσ , Ø ∈ Pol(E;d) 

In the Algebraic Combinatorics the spherical cubature 
formulas are also called the weighted spherical 
designs. 

PROPOSITION : A spherical code X is a spherical 
design of even index d if and only if 

∑ Ø(gx) = ∑ Ø(x) , Ø ∈ Pol(E;d) , For all , g ∈ O(E) . 

Proof.  This immediately follows from the unitary 
invariance of the measure σ. The identity means that 
the linear functional 

Ø → 1/|X| ∑ Ø(x) 

is orthogonally invariant. On the other hand, this 
functional can be represented in the Riesz form, 

Ø → ∫ ψ Ø dσ 

where ψ∈ Pol(E;d) and ψ is uniquely determined. 

Hence, the function ψ must be orthogonally invariant. 
Since the action of the orthogonal group on S(E) is 
transitive, ψ(x) = const. 

Note that if d is odd (i.e. ∈d = 1) then 

∫  Ø dσ = 0 , Ø ∈ Pol(E;d) 

∫  Ø dq = ∑ Ø(x) q(x) = 0, Ø ∈ Pol(E;d) 

A spherical code X is called antipodal if X = -X, i.e. 

with every point x∈  X the opposite 

point -x also belongs to X. Obviously, any antipodal 
spherical code is a spherical design of index d for any 
odd d. However, it is easy to construct a spherical 
design of index 1 which is not antipodal. Indeed, for d 
= 1 is equivalent to 

∑x       =0 

x ∈X 

which just means that the baricenter of the set X is at 
the origin. Obviously, it includes not only antipodal 
spherical codes. A spherical code X is called podal if X 

\ (-X) = Ø;, i.e. for every x ∈ X its opposite point -x 

does not belong to X. 

PROPOSITION : A spherical cubature formula of index 
d is equivalent to the system of equalities 

∫  Ø dq = ∑ Ø(x) q(x) = 0, Ø ∈ Harm(E;k) 

And, in addition 

∫  dq = ∑ q(x) = 1 

in the case of even d . 

Proof. The cubature formula implies since Ø ∈ 

Harm(E; k) so, Ø ∈ Pol(E; d) for k ∈ Ed according . 

Thus, it is applicable R to Ø 2 Harm(E; k); k 2 Ed. It 
remains to note that Ø d¾ = 0 by (3.60). In addition, if 
d is even. 

Conversely, the harmonic decomposition 

Ø = ∑ Øk   , yields 

∫  Ø dσ = ∑ ∫ Øk dσ = ∫ Øed dσ 

The integral is Ø0 if ∈d = 0 since Ø 0 = const and ¾ is 

normalized. If ∈d = 1 then the integral is equal to 

zero. 

Similarly, 

∫  Ø dq =  ∫ Øed dq 

COROLLARY : A spherical code X is a spherical 
design of index d if and only if 

∑ Ø (x)       =0 , Ø ∈ Harm(E;k) , k∈ ∈d , k>=1. 

COROLLARY : A spherical cubature formula of 
index d is a spherical cubature formula of every 

index k ∈  Ed: 

DEFINITION : A spherical cubature formula of 
degree d (or strength d) is a spherical 

cubature formula of all indices 2t; 2t - 2; : : : ; 0; i.e. 

∫  Ø dq = ∫ Ø dσ , Ø∈ Pol(E;k) , 0<=k<=d 

In view of the homogeneous lifting this definition is 
equivalent to 

∫  Ø dq = ∫ Ø dσ , Ø∈ Pol(E) 

PROPOSITION : A spherical cubature formula of 
degree d is the same as a spherical cubature 
formula of indices k = d - 1; d. 

COROLLARY : Any antipodal spherical cubature 
formula of even index d has also degree d. 

COROLLARY : For any spherical cubature formula 
of even index d its symmetrization 

X → X` = X U (-X) , Q → Q` , Q`(+-x) = ½ Q(X) 

yields an antipodal spherical cubature formula of 
degree d. 
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In particular, the symmetrization generates a 
correspondence between podal and antipodal 
spherical codes such that each antipodal spherical 
code can be obtained from exactly 2

|X|
 podal codes. 

PROPOSITION : A spherical cubature formula of 
degree d is equivalent to the system of equalities. 

∫  Ø dq = ∑ Ø(x) q(x) = 0, Ø ∈ Harm(E;k) , 1 <= k <= 

d. 

COROLLARY : A spherical code X is a spherical 
design of degree d if and only if 

∑ Ø(x) = 0 , Ø ∈ Harm(E;k) , 1 <= k <= d. 

A spherical design of degree d is called a d-design. 
Now let us note that the upper bound is valid for any 
cubature formula as a spherical code with special 
properties. Below we establish a lower bound for the 
number 

n= |X| = |suppq| 

of nodes of a spherical cubature formula of even index 
d. If d is odd then there is no nontrivial lower bound for 
n. Indeed, any pair of mutually opposite points on the 
sphere is a spherical design of index d. 

THEOREM : For any spherical cubature formula of 
even index d the inequality holds. 

 

 

Proof. Suppose to the contrary and then consider the 

interpolation problem for θ ∈ Pol(E; d/2 ): 

θ (xk) = 0, 1 <= k <= n 

This problem has a nontrivial solution. By the given 

cubature formula for the function Ø= | θ | 
2
 ∈ Pol(E; 

d/2 ): we get 

∫   | θ | 
2
 dσ = 0 

whence θ = 0, the contradiction. 

The problem arises whether the lower bound is exact 
and, in the case of affirmative answer, what is the 
corresponding cubature formula. 

DEFINITION : A spherical cubature formula of even 
index d is called tight if in the equality is attained. 

It is easy to see that the support X of any tight 

spherical cubature formula is podal. Indeed, if x ∈ X \ 

(-X) then one of nodes x0 or -x0 can be omitted since 
Ø (-x0) = Ø (x0): Thus, the number of nodes becomes 
less than lower bound .A spherical code X = (xk)n  is 
called t-interpolating if for every vector [³k]n there 

exists a unique form Ø ∈ Pol(E; t) . 

LEMMA : A spherical code X = (xk)n  is t-interpolating 
if and only if 

n =  ﴾m + t – 1 ) 

( m – 1     ) 

and there is no a nontrivial form Ø ∈  Pol(E; t) such 

that  Ø |X = 0. 

THEOREM . If a spherical cubature formula of index 
d = 2t is tight then 

(i) its support (xk)n 1 is a t-interpolating system; 

(ii) the corresponding Lagrange basis (Lj)n 1 is 
orthogonal, i.e. 

(Lj , Lk) = ∫ Lj` Lk dσ = 0 , j ≠ k. 

(iii) the weights are 

Qj = || Lj||
2
 = ∫ |Lj|

2
 dσ , 1 <= j <= n. 

Conversely, let a spherical code (xk)n 1 be a t-
interpolating system with property (ii): Then (xk)n 1 is 
the support of the tight spherical cubature formula of 
index d = 2t with weights . 

Proof. Let the formula be tight. Then for any form Ø 

∈  Pol(E; t) ,we have 

∫ | Ø |
2
 dσ = ∑ | Ø (xk) |

2
 qk. 

If  Ø (xk) = 0; 1 <= k<=· n; then Ø = 0, i.e. the 
mapping Ø → (Ø (xk))n 1 is injective. Moreover, n = 
dim Pol(E; t). As a result, we get (i) by Lemma. Using 
the cubature formula with Ø = Lj` Lk or jLkj

2
 we get (ii) 

and (iii) . Conversely, any form Ø ∈  Pol(E; d) is a 

linear combination of the products LjLk ∈  Pol(E; d), 

Ø = ∑ bjk Lj` Lk 

with some coefficients bjk. (Indeed, any monomial of 
degree d is product of two monomials of degree t and 
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the latter can be both decomposed for a basis (Lj): ) 
Hence, 

∑ Ø(x1) qt = ∑ bjk` Lj`(x1)` q1 = ∑bkk. Qk 

So, the cubature formula under consideration is of 
index d. The formula is tight by Lemma Below we need 
the following statement of a general nature. 

LEMMA : For a fixed pole x∈   S(E) the evaluation 

functional  Ø → Ø (x) on Pol(E; t) can be represented 
as 

Ø(x) = ∫ θx` (y) . Ø (y) dσ (y) 

where θy ∈ Pol(E; t): The norm || θx || does not 

depend on y. Therefore, || θx ||  only depends on m 
and t. 

Proof. The first statement is actually the Riesz  
representation of the evaluation functional. Further, 
implies 

∫ θgx` (y) . Ø (y) dσ (y) = ∫ θx`(y) . Ø (gy) dσ (y) , g ∈ 

O(E). 

Taking Ø (y) = θgx(y) we obtain, 

|| θgx || 
2
 <= || θx || 

2
 ∫ | θgx (gy) |2 dσ (y) 

by the Schwartz inequality. Since the measure ¾ is 
orthogonally invariant, the latter integral is equal to 
kµgxk so, the inequality takes the form kµgxk · kµxk 

for all y 2 S(E) and all g ∈   O(E). Changing g for g¡1 

and x for gx we obtain the converse inequality. Thus, 
kµgxk = kµxk and it remains to recall that O(E) acts on 
S(E) transitively. Combining this lemma with Theorem  
we obtain, 

COROLLARY : In any tight spherical cubature formula 
the weights are equal. In other words, the support of 
any tight spherical cubature formula of index d is a 
spherical design of index d (a tight spherical design). 
As we already know, this spherical design is podal. 

Proof. Since the basis (Lj) ½ Pol(E; t) is orthogonal, we 
have the decomposition 

θx = ∑ (θx , Lj) / || Lj  || 
2
 . Lj 

Whence 

θx (y ) = ∑ Lj (x). Lj (y) / qj 

In particular, 

θxk (y) = Lk(y) / qk , 1<= k <= n , 

since (Lk) is the Lagrange basis. Passing to the norms 
,we obtain 

|| θxk  || = || Lk || / qk  = 1/ √qk 

It remains to apply Lemma again. 

REMARK : As follows from the proof 

|| θx  ||  
2 
  = n =  ﴾m + t – 1 ) 
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