
Journal of Advances in Science and Technology

Vol. III, No. VI, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 1

E-Mail: ignitedmoffice@gmail.com

Groupware Toolkits for Collaborative Mobile

Groupware

Vijay Gupta

Research Scholar, Pacific university, Udaipur India

ABSTRACT:- Groupware toolkits provide application developers with a range of facilities for reducing the complexity of

building distributed groupware. In general, toolkits support their own particular paradigm for developing groupware
applications and developing groupware within his paradigm is usually convenient. However, attempting to program outside
the supported paradigm is often either difficult or impossible.

--♦-------------------------------------

INTRODUCTION

OVERVIEW

This section considers the suitability of a range of
groupware toolkits for developing mobile groupware, with
particular emphasis on Group Kit. In common with
distributed systems toolkits, groupware toolkits enable
developers to create distributed applications without
regard to certain distributed details. However, unlike
distributed systems toolkits, groupware toolkits also
provide developers with a wide range of high level
programming tools specifically aimed to ease the task of
building groupware applications. A wide selection of
groupware toolkits currently exist, ranging from
relatively simple toolkits that offer developers support
for creating a specific class of groupware application
(e.g. the Dist Edit toolkit designed to support the
development of shared text editors) to more flexible
toolkits that provide developers with tools for
creating highly sophisticated, graphical based,
groupware. However, as one might expect, these
toolkits have been developed assuming a fixed and
reliable underlying communications infrastructure.

GROUP KIT: A TYPICAL MODERN GROUPWARE
TOOLKIT

AN OVERVIEW OF GROUP KIT

The group Kit toolkit [Roseman,96], [Roseman,92]
extends the standard Tcl/Tk toolkit to provide developers
with an application infrastructure for building distributed
groupware. GroupKit is currently available for UNIX,
Windows and Apple based platforms and thus enables
groupware to be built that is capable of operating over
heterogeneous platforms.

Group Kit utilises a semi-replicated data architecture
and provides developers with a variety of multi-user
widgets, tools for handling session management and
support for managing shared information.

GROUP KIT’S ARCHITECTURE

A typical Group Kit run-time process model is
illustrated in figure 3.5. This shows a collaboration
between two workstations each running two conferences:
‘A’ and ‘B’.

Journal of Advances in Science and Technology

Vol. III, No. VI, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 2

E-Mail: ignitedmoffice@gmail.com

The ovals in the diagram represent instances of
processes running on each machine, and the directed
lines joining them indicate communication paths. The
figure shows three types of GroupKit process: the
centralised registrar, the replicated session managers and
the replicated conference applications.

The registrar maintains a list of all conferences and the
users in each conference. It thus serves as an initial
contact point to locate existing conference processes and
their addresses. In order for new conferences to be
established, the address of the registrar needs to be
known to all other processes.

The session manager process is replicated per user. It
provides both a user interface and a policy dictating how
conferences are created or deleted, how users are
permitted to enter and leave conferences, and how
conference status is presented. When session manager
processes are created, they connect to the registrar.

The conference application is a GroupKit program which
can be invoked by the user via the session manager.
Conference applications typically interact as replicated
processes, with a replica running on each participant's
workstation.

This run-time infrastructure is maintained entirely by
GroupKit and the conference application code is not
required to take explicit action regarding the creation of

processes or communication establishment. Programmers
are required to build both session managers and
conference applications. Also, programmers need to be
aware that they are building distributed applications,
and must attend to issues such as concurrency control
and synchronization.

GROUP KIT’S SUPPORT FOR AWARENESS

Group Kit supports awareness by providing pre-
packaged multi-user widget sets. These enable
programmers to build multi-user awareness
functionality into groupware with relatively little
development effort. Three examples of multi-user
widgets provided by GroupKit are: participant status
widgets, telepointer widgets and multi-user scrollbars.

• Participant Status Widgets

GroupKit provides a special widget for reflecting the
status of participating users. For example, as users enter
and leave a conference other users can observe this
activity and obtain information about conference
participants. If a user wishes to obtain details about
another user then, by simply selecting that user’s icon, a
business card containing further information about the

user can be displayed.

• Telepointer Widgets

The API provided by GroupKit enables telepointers to
be added to an application using no more than a few

Journal of Advances in Science and Technology

Vol. III, No. VI, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 3

E-Mail: ignitedmoffice@gmail.com

lines of code, such as:-

gk_initializeTelepointers
gk_specializeWidgetTreeTelepointer.canvas

Group Kit’s telepointers can be used to support relaxed
WYSIWIS by having the telepointer drawn relative to a
specified widget, rather than the application window.

• Multi-user Scrollbars

GroupKit supports multi-user scrollbars to provide users
with workspace awareness, i.e. an awareness of where
others are working in a large document. Group Kit’s multi-
user scrollbars consist of two parts: a conventional
scrollbar showing the local user’s viewing position in the
shared document and a set of additional scrollbars
showing where other users are viewing the shared
document.

GROUP KIT’S SESSION MANAGEMENT

The GroupKit session manager enables a user to enter a
group conference in a number of different ways: the user
can explicitly join the conference, implicitly join the
conference via an invitation, or create the conference.
The session manager also manages the departure of
group members. When the last group member elects to
leave a conference, that person is asked if the
conference application should persist. If the conference is
required to persist then its state is saved so that it can be
re-entered later with its contents intact.

GROUP KIT’S MULTICAST REMOTE
PROCEDURE CALL MODEL

Group Kit’s multicast model is used to communicate
changes and trigger program execution across the
application processes contained in a session. The
multicast RPC (Remote Procedure Call) model supported
by GroupKit hides all routing and communications details
from the programmer and provides both blocking and non-
blocking forms of RPC. Group Kit provides one blocking
RPC primitive, i.e. gk_serialise (described in section
3.3.2.6) and three non-blocking RPC primitives. The
first, called gk_toAll, multicasts the procedure request
to all conference processes in the session, including the
local user. The second, called gk_toOthers, multicasts
the procedure request to all other remote conference
processes in the session except the local process that
generated the call. The third form, gk_toUsernum,

directs the request to a particular conference process.

GROUP KIT’S SUPPORT FOR MANAGING
SHARED INFORMATION

Group Kit supports the separation of an application’s
data model from its associated graphical view
(described in section 3.2.3.1) by providing a shared
data model called an environment. This takes the form
of a dictionary-style data structure containing keys and
associated values. While instances of environments run
on different processes, the run-time system makes sure
that changes to one instance are propagated to other
instances. Changes to an environment's state can be
tracked as events that trigger Group Kit’s notification
mechanism. Using this event/notification mechanism, the
programmer can bind call-backs to an environment, and
receive notification when changes to that environment
occur. Interface code can thus be written that
adjusts the local graphical view when changes to
the environment occur.

Group Kit supports a variety of different concurrency
control mechanisms. In more detail, apart from selecting
to have no concurrency control the application developer
can select to use either serialisation or locking.
Serialisation ensures that events are received across
all conference processes in the same order. In order to
utilise the serialisation mechanism a gk_serialize
multicast primitive is used as opposed to the gk_toAll
primitive; this causes the message to be sent to a
serialising process which in turn sends the message to
each conference process, including the local process.
Group Kit’s support for locking utilises a special purpose
lock manager which enables the use of both optimistic
and pessimistic locking strategies. In addition, the lock
manager enables the developer to request the identity of
a lock’s owner and also supports the specification of
sophisticated conflict detection schemes, e.g. schemes
based on a locking hierarchy.

OTHER TOOLKITS

A number of other toolkits (described below) raise
interesting ideas when considered in the context of
mobile groupware.

• The Caelum Toolkit

The Caelum toolkit [Anker,97] is a general framework
for constructing distributed groupware. Application
developers are provided with a software development kit
(SDK) for constructing groupware based around the
concept of process groups. One very useful feature
provided by the toolkit is the ability to associate a pre-
defined time-out period with a message that allows the
application to decide whether the message should be
delivered or discarded should the time-out period be
exceeded. This facility enables data consistency to be

Journal of Advances in Science and Technology

Vol. III, No. VI, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 4

E-Mail: ignitedmoffice@gmail.com

determined at the application level and the level of
consistency chosen could, in theory, be chosen by the
user, given the requirements of their current collaboration
and the state of the network.

In addition, the toolkit enables QoS requirements to
be associated with group multicast. More specifically,
application programmers can choose the strength of
message ordering guarantee based on application
requirements. So, for example, the costly virtual
synchrony guarantee could be used for shared data
applications with strong consistency requirements but not
used for those performance oriented applications
requiring soft real- time message delivery, e.g. video
transmission.

• The Java Shared Data Toolkit

The Java Shared Data Toolkit [Burridge,98] is of
interest because it supports the notion of a one-to-
many communications channel. These channels can be
created with certain QoS properties including reliability
and ordering. This functionality provides the programmer
with some degree of control over the
consistency/performance trade-off.

Another useful feature of this toolkit is the ability to
raise and manage exceptions when certain
communication difficulties arise. Although the
exceptions currently supported are relatively basic
(currently, a single ConnectionException handles all
communication problems) the basic mechanism is very
flexible and could enable the application to receive
notification when certain interesting communication

problems occur.

 • The GEN Toolkit

The prototype GEN toolkit [O’Grady,96] is based on the
open implementation design principle (as adopted by
Adapt described in section 2.4.4.2) in order to
dynamically support a range of different data sharing
strategies. O’Grady’s key motivation for utilising open
implementation techniques was to break down the
common black-box approach [Kiczales,96] towards toolkit
design, whereby a toolkit supports a given API but the
actual underlying implementation is hidden from the
programmer. It can be argued that this leaves the
programmer with little flexibility if the API does not meet
the requirements of the application currently being
developed, e.g. if the consistency strategy supported by
the toolkit is stronger than the application being
developed requires. Furthermore, the black- box
approach can prematurely fix the balance of certain
system trade-offs.

The approach adopted by GEN enables developers to
control the consistency/performance trade-off in order to
meet the current application’s requirements. In more
detail, the GEN toolkit supports open implementation by
supplying two distinct components: an API for utilising
a set of default data sharing strategies and a meta-
interface for enabling the programmer to create new

mechanisms for data distribution and concurrency control.

• The Prospero Toolkit

Prospero [Dourish,96b] is another example of a
groupware toolkit that is strongly based around the
open implementation technique. In common with GEN,
Prospero concentrates on enabling the application
programmer to revise and adapt distributed data
management and concurrency control mechanisms and
achieves this via the use of meta- object protocols
[Dourish,95]. The toolkit is implemented in an
enhanced version of Common Lisp which provides
support for meta-objects and enables strategies to be
changed through the standard object-oriented
techniques of subclassing and specialisation. At the
default level, Prospero supports consistency management
by providing activity streams which can be allowed to
diverge (or forced to re-synchronise) depending on the
consistency required between streams. Conversely, at
the meta-level, Prospero enables the implementation of
these streams to be treated as meta-objects and
therefore open to change or specialisation by the
application developer.

ANALYSIS OF GROUPWARE TOOLKITS

The GroupKit toolkit, in common with other groupware
toolkits, provides developers with an appropriate run-time
infrastructure and API for developing groupware designed
to operate over reliable network infrastructures.
However, the multicast mechanism provided by the
toolkit has certain problems when used for constructing
mobile groupware. The fundamental difficulty is that the
RPC mechanism hides too many communication
details from the application programmer, i.e. it strictly
enforces transparency. This is contrary to the kind of
support required given the potential for communication
difficulties. In fact, application programmers require
flexible means for receiving notification and feedback
regarding the existence of communication difficulties
between any group members.

Many early toolkits, such as DistEdit, provided insufficient
flexibility for managing shared data in a mobile
environment. This is because they tended to utilise
causal or total ordering guarantees in order to enforce a

Journal of Advances in Science and Technology

Vol. III, No. VI, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 5

E-Mail: ignitedmoffice@gmail.com

very strict level of consistency between members views.
Such ordering semantics might not be required and
impose unnecessary performance overheads on a
group’s collaboration. The interesting contribution of the
Caelum and Java Shared Data toolkits are that they
both provide the application programmer with some
degree of control over the strength of ordering used. In
addition, the Java Shared Data toolkit supports the kind of
flexible notification scheme required by developers of
mobile groupware.

The work on open implementation techniques (utilised by
the GEN and Prospero toolkits) tackles the need for
flexibility by enabling developers to actually control the
implementation of the system’s data sharing strategy.
This approach enables developers to tailor data
distribution strategies in order to match both the
consistency/performance requirements of the application
and the current quality of group communications.
Interestingly, as part of his motivation for utilising open
implementation techniques, Dourish argues that toolkits
need to support both dynamic and implementational
flexibility. In more detail, dynamic flexibility refers to the
requirement that the system should be able to match and
adapt to changes in the group’s interactions over time,
and, implementational flexibility refers to the need for
systems to be able to respond to a variety of
implementation environments, which may change over
time. This latter form of flexibility is of particular relevance
for mobile groupware because the underlying techniques
for supporting collaboration need to react or adapt to
dynamic changes in the networking environment.

CONCLUSIONS

From this work, the following conclusions can be made:-

• Implications for managing shared data in a mobile

environment

In an unreliable mobile environment, the provision
of appropriate support for managing shared
information is difficult. If a replicated data architecture
is used then groupware toolkits tend to enforce
consistency between members’ views by using an
atomic broadcast mechanism to broadcast server
updates to remote sites. However, as described in
section 2.4.8.1, by using such a broadcast mechanism, if
one group member suffers network difficulties (and so
cannot receive the update) then group consistency is
enforced by ensuring that no members receive the update.
Conversely, if a centralised data architecture is chosen,

then the process managing the shared data can
become a performance bottleneck.

• The need for additional forms of awareness in a

mobile environment

The concept of awareness is of particular relevance in a
mobile environment. It can be argued that new forms of
awareness are required to provide group members
with appropriate feedback to make them aware (or rather
as aware as they wish to be) of the affect that
fluctuations in the quality of group communications
could have on their collaboration. This would, therefore,
save them from being forced to make assumptions
regarding the current state of their connectivity with the
rest of the group and also give them the opportunity to
adapt their behaviour appropriately.

• The need for suitable notification mechanisms

In general, notification mechanisms are useful tools for
supporting awareness (see [Ramduny,98] for a general
discussion and exploration on the role of notification
servers). In particular, appropriate notification
mechanisms are required when developing mobile
groupware in order to enable actions to be triggered
when certain group communication problems occur.
Given such notification, applications can provide the
style of mobile awareness described above and also
have the ability to adapt their data management
strategies in response to changes in group connectivity.
However, in order for such event notification
mechanisms to operate effectively, low-level
communication information needs to be provided by the
underlying transport service.

• The importance of flexible coupling in a mobile

environment

The need for groupware that supports flexible coupling is
of particular importance in a mobile environment. At the
interaction level, this should enable users to switch
between asynchronous and synchronous styles of
interaction depending on the current quality of group
communications and the requirements of the current
task. More specifically, when group communications is
poor then an asynchronous style can be used to
reduce the frequency of communication with other group
members. Conversely, a more synchronous style of
interaction can be used when the quality of the
underlying network can support more frequent
communication between group members. It can thus be
argued that, in a mobile environment, where the quality
of group communications is often dynamic, the classical
distinction between asynchronous and synchronous

Journal of Advances in Science and Technology

Vol. III, No. VI, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 6

E-Mail: ignitedmoffice@gmail.com

interaction [Ellis,91] should be less distinct [Cheverst,96].

• The need for enhanced multi-user

widgets in a mobile environment

Toolkits providing multi-user widgets need to support
the issues of awareness and flexible coupling described
above. For example, a multi-user telepointer widget
needs to support flexible coupling such that when the
quality of group communications is high the telepointer
widget can behave in a tightly coupled manner, i.e. by
continually tracking and propagating each member’s
mouse movements. However, when the quality of the
network degrades, then a loosely coupled form of
telepointer is required. This version could be designed
in such a way that it only broadcasts a member’s
cursor position when that member indicates that it is
necessary to do so. Regarding the issue of awareness, a
multi- user status widget could provide information
such as whether a group member had formally left the
group, or was experiencing a period of disconnection. In
addition, such status widgets could reveal certain details
regarding a group member’s connection, e.g. the level of
cost associated with his/her network communication.

• Implications for session management in a mobile

environment

In a mobile environment the issue of providing
suitable session management is complicated by the
fact that group members can temporarily lose network
connectivity. For this reason session managers should
provide suitable support for bringing such group members
up-to-state with the rest of the group. This could be
achieved by treating reconnected group members as
latecomers and either sending them the current state of
shared data or buffering and then transmitting the
sequence of updates which were missed by the group
member, whilst he or she was disconnected.

• The need for flexible concurrency control

Greenberg and Marwood [Greenberg,94] argue the
need to support flexible concurrency control when
developing groupware applications. Such flexibility is
required because the user is an active part of the
collaborative process and their concurrency control
requirements can change over time depending on the
current task. They also argue that some conflicting
interactions are best left to users to solve by social
means, implying that some feedback of conflicting actions
be shown within the interface. Another advocate for
flexible concurrency control is Dourish [Dourish,96b]
who introduces the notion of divergence within his
Prospero toolkit in order to enable a flexible balance

to be maintained between the consistency of data and
its availability. In a mobile environment the importance of
flexibility is increased further because the implications
of choosing a particular method of concurrency control
can vary as the underlying quality of group
communications fluctuates. For this reason, it is vital that
applications have the ability to select appropriate
concurrency control policies that match not only the
user’s current task but also the quality of group
communications.

In summary, it is apparent that many of the concepts
and techniques fundamental to groupware are
complicated when examined in a mobile context and
therefore special consideration needs to be given to
the development tools aimed at supporting mobile
groupware. The following chapter describes a
prototype mobile collaborative application designed to
highlight the kind of problems that can occur when
building an application designed for operation in a mobile
environment using traditional groupware techniques.

REFERENCES:-

 [Anker,97] Anker, T., V. Gregory, D. Dolev and I.
Keidar. “The Caelum Toolkit for CSCW: The Sky
is the Limit.”, Proc. Third International Workshop
on Next Generation Information Technologies
and Systems (NGITS 97), June 30 - July 3, 1997,

Neve Ilan, Israel.

 [APM,89] APM Ltd. “The ANSA Reference
Manual Release 01.00.”, Architecture Projects
Management Ltd., Cambridge, U.K. 1989.

 [APM,92] APM Ltd. “An Introduction to
ANSAware 4.0.”, Architecture Projects
Management Ltd., Cambridge, U.K. 1992.

 [Brinck,92] Brinck, T. and L.M. Gomez. “A
Collaborative Medium for the Support of
Conversational Props.”, Proc. ACM
CSCW'92 Conference on Computer
Supported Cooperative Work, pages 171-178,

Toronto, Canada, October 31-November 4 1992.

 [Burridge,98] Burridge, R. “Java Shared Data
Toolkit User Guide.”, User Guide, Version 1.4,

Sun Microsystems Inc, June 1998.

 [Casio,99] Casio. “Casio Announces World’s
Smallest Multimedia Color Palm-Size PC.”,
Press Release, Casio Inc.,
http://www.casio.com/corporate/pressdetail.cfm?I
D=60. January 1999.

http://www.casio.com/corporate/pressdetail.cfm

Journal of Advances in Science and Technology

Vol. III, No. VI, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 7

E-Mail: ignitedmoffice@gmail.com

 [Chang,84] Chang, J. and N. Maxemchuk.
“Reliable Broadcast Protocols.”, ACM
Transactions on Computer Systems, Vol. 2, No. 3,

pages 251-275, August 1984.

 [Dourish,96b] Dourish, P. “Consistency
guarantees: Exploiting application semantics for
consistency management in a collaboration
toolkit.”, Proc. ACM CSCW'96 Conference on
Computer Supported Cooperative Work, pages

268-277, Boston, November 1996.

 [Edwards,96] Edwards, K., “Policies and Roles
in Collaborative Applications.”, Proc. ACM
CSCW'96 Conference on Computer Supported
Cooperative Work, Boston, November 16-20
1996.

 [Ege,87] Ege, A. and C. A. Ellis. “Design and
Implementation of GORDION, an Object Base

Management System.”, Proc. 3
rd

International
Conference on Data Engineering, pages 36-45,

February 1987.

 [Greenberg,91] Greenberg, S. and R. Bohnet.
“GroupSketch: A multi-user sketchpad for
geographically-distributed small groups.”, Proc.
Graphics Interface '91, Calgary, Alberta,

Canada. 1991.

 [Greenberg,94] Greenberg, S. and D.
Marwood, “Real time groupware as a
distributed system: Concurrency control and
its effect on the interface.”, Proc. ACM
CSCW'94 Conference on Computer Supported
Cooperative Work, pages 207-217, Chapel Hill,

North Carolina, October 22-26 1994.

 [Greenberg,96] Greenberg, S. and M.
Roseman. “Groupware Toolkits for
Synchronous Work.” Research Report 96/589/09,
Department of Computer Science, University of
Calgary, Calgary, Canada, November 1996.

 [HP,99a] Hewelet Packard, “HP Jornada
handheld PCs.”, http://www.hp.com/jornada/.
1999.

 [HP,99b] Hewelet Packard, “HP Omnibook 4100
Notebook PC - Data Sheet.”,
http://www.hp.com/omnibook/products/4100/datas
heet.html. 1999.

 [IEEE,97] Institute of Electrical and Electronics
Engineers. “Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer
(PHY) specifications.”, IEEE Standards
document, 802.11-1997. ISBN 1-55937-935-9.

June 1997.

 [IrDA,99] Infrared Data Association. “Technical
Summary of IrDA DATA and IrDA
CONTROL.”,
http://www.irda.org/standards/standards.asp.
1999.

 [ISO,92] International Standards Organisation.
“Draft Recommendation X.901: Basic Reference
Model of Open Distributed Processing - Part1:
Overview and Guide to Use.”, Draft Report,
International Standards Organisation WG7
Commitee. November 1992.

 [Lauwers,90] Lauwers, J.C. and K.A. Lantz.
“Collaboration awareness in support of
collaboration transparency.”, Proc. ACM
SIGCHI'90 Conference on Human Factors in
Computing Systems, pages 303-211, Seattle,

Washington, April 1-5 1990.

 [Leopold,91] Leopold, R.J. “Low-earth orbit
global cellular communications network.”, Proc.
IEEE International Conference on
Communications - ICC '91, pages. 1108-1111.

1991.

 [Microsoft,98] Microsoft. “Distributed Component
Object Model Protocol.”, Internet Draft
Specification,http://www.microsoft.com/oledev/ole
com/draft-brown-dcom-v1-spec-02.txt. January
1998.

 [Microsoft,99] Microsoft, “Microsoft Windows

CE”, http://www.microsoft.com/windowsce/. 1999.

http://www.hp.com/jornada/
http://www.hp.com/jornada/
http://www.hp.com/omnibook/products/4100/datasheet.html
http://www.hp.com/omnibook/products/4100/datasheet.html
http://www.hp.com/omnibook/products/4100/datasheet.html
ROL.”,%20http:/www.irda.org/standards/standards.asp.
ROL.”,%20http:/www.irda.org/standards/standards.asp.
http://www.microsoft.com/oledev/olecom/draft-brown-dcom-v1-spec-02.txt
http://www.microsoft.com/oledev/olecom/draft-brown-dcom-v1-spec-02.txt
http://www.microsoft.com/windowsce/

