
Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 1

E-Mail: ignitedmoffice@gmail.com

The Triptych FPGA Architecture

Bharti Gupta

Research Scholar, CMJ, University, Shillong, India

--♦-------------------------------------

BACKGROUND

Field-programmable gate arrays (FPGAs) have quickly
become an important medium for the implementation of
digital logic. These arrays exploit the increasing capacity of
integrated circuits to provide designers with reconfigurable
logic that can be programmed on an application-specific
basis. This drastically increases flexibility in both the
design process and the final artifact by permitting one
board-level design to perform many functions, or to be
upgraded in the field.

Almost all of the FPGAs currently available - and certainly
all of the dominant ones - are based 011 a strict separation
between logic and routing resources which pervades from
the architecture itself to the tools employed in mapping
designs. This closely parallels the development of
integrated circuit gate arrays, arrays that utilize a few metal
layers for customization. A similar distinction was made
between logic cells and the routing resources that
interconnect them. The strict separation was too confining,
eventually leading to the sea-of-gates approach.
Conceptually, the difference is that in a sea-of-gates the
split between logic and routing area can be made 011 a
per-mapping basis. This permits applications with regular
logic structures to more efficiently utilize silicon area, while
still permitting the use of many wires (at the expense of
logic) for random logic circuits.

FPGAs are at a similar point today. As with mask-
programmable gate arrays, an ever larger proportion of the
silicon area is being devoted to routing resources to ensure
that more and more designs are routable. Furthermore, the
logic cells are becoming ever more complex, attempting to
perform coarser-grain functions and lighten the load 011
the routing resources, but often end up being under-
utilized. As was the case for gate arrays, it is now time to
evaluate the logic/routing tradeoff in FPGA architectures.

We have developed the Triptych FPGA architecture, which
can be viewed as an FPGA in the sea-of-gates style.
Triptych addresses the two fundamental efficiency
problems with current FPGAs: increasing routing area and
decreasing cell utilization. The innovations include the
flexible allocation of logic cells to either logic or routing

functions, an array structure that more closely matches the
wide shallow structure of most logic functions, and fine-
grain cells that can be connected to form larger structures
through short, fast local wires.

The rest of the section is divided into four major sections.
Section provides the details of the Triptych architecture

1

and explains the rationale underlying the design decisions.
Section describes some variations 011 the base
architecture, including the first FPGA to fully support the
implementation of asynchronous systems. Section
completes the body of the section by presenting a
methodology for comparing FPGA architectures, and
demonstrates Triptych's advantages. Finally, section
finishes with some conclusions.

1.1 The Triptych Architecture

The overall goal motivating the development of the
architectures described in this section was to reduce the
significant cost paid for routing in standard FPGAs. The
approach taken is twofold. First, instead of having a strong
separation between logic and routing resources, with the
percentage of each fixed in the architecture, the resources
are combined in a way that allows the tradeoff of logic and
routing resource on a per-mapping basis. This is done by
replacing the logic blocks of standard architectures with
Routing & Logic Blocks (RLBs), which perform both logic
and routing tasks. The second modification is to match the
structure of the logic array to that of the target circuits,
rather than providing an array of logic cells embedded in a
general routing structure. Most circuits are wide and
shallow, with large fan-in/fanout trees. By matching the
physical structure to this logical structure, we reduce the
amount of “random” routing that is otherwise required.

The Triptych routing structure is shown in figure. Short, fast
connections are provided between cells in a checkerboard
pattern, with signals flowing from left to right. This basic
structure is augmented with segmented routing channels
between the columns that facilitate larger fanout structures
than is possible in the basic array.

Finally, two copies of the array, flowing in opposite
directions, are overlaid. Connections between the planes

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 2

E-Mail: ignitedmoffice@gmail.com

exist at the crossover points of the short diagonal wires. It
is clear that this array does not allow arbitrary point-to-point
routing like that associated with the Xilinx FPGA. However,
we claim that this array matches the form of a large class
of circuits, and that a mapping strategy that takes this
structure into account can produce routable
implementations1. Such an approach will use the fast
diagonal connections for critical paths, while less critical
signals can be routed longer distances via segments for
vertical movement, and unused RLB inputs for horizontal
movement.

A Triptych RLB is capable of performing both function
calculation and routing tasks simultaneously, which leads
to several different uses of the RLB. The three most
obvious are: (a) a routing block with each input connected
to one of the outputs; (b) a splitter with one of the inputs
going to two or three of the outputs; and (c) as a function
calculator with the three inputs going to the function block
and the function going out the outputs.

However, there are two important classes of hybrids that
help produce more compact designs. The first comes from
the observation that in blocks used to calculate a three-
input function, the function block value will most likely not
go out all three outputs, and one or two of the input signals
could be sent out the unused output connection(s), as in
(d). Secondly, a function of two inputs can be implemented
by making the function insensitive to the third input, thus
allowing the unused input to be used to route an arbitrary
signal, as in (e). An important observation is that the RLBs
will never need to be used for one-input functions (i.e., an
inverter), since any output signal will only be used either as
an input to another arbitrary function block, where the
inverter could be merged into the function computed, or to
an output pin, where an optional inversion can be applied.

As was shown earlier, the Triptych FPGA has no global
routing for moving signals horizontally. Instead, there is a
heavy reliance on unused RLBs and unused portions of
RLBs to perform these routing tasks.

The structure detailed above differs little from Triptych’s
initial conception. With the experience we have gained with
the original Triptych architecture, with placement and
routing tools, and with asynchronous and interfaced

synchronous circuits, we have extended this architecture.
These extensions can be grouped into two classes, 4-input
4-output RLBs, and asynchronous support, with the
architecture for asynchronous circuits named “Montage”.

Figure. A 4-input, 4-output RLB. The segmented channel
input is split into two separate inputs, to allow for greater
routeability. Muxes are also added to the function block
inputs to choose three of the four RLB inputs for function
calculation.

1.2. The Interdependence of Architecture and Tools

It is important when developing a new FPGA architecture
to ensure that the mapping tools will be able to take
advantage of it. There is a strong analogy between
processor architecture and compilers. Architectural
features that tools cannot handle are not useful. Thus, it is
impossible to evaluate an architecture or a set of tools in
isolation. They are sufficiently interdependent that they
must be developed and evaluated together. An unfortunate
result is that some architectural features that may be
valuable in their own right may be discarded because
current tools cannot support them sufficiently. With
increasingly sophisticated tools, previously discounted
architectural ideas may become viable.

We structured the Triptych tools to support architecture
development. Both the placement and routing programs
were optimized for flexibility and not performance in terms
of CPU time. It was more important to be able to retarget
the tools quickly to evaluate variants 011 the Triptych
architecture than to have the fastest turn-around time for
individual tool runs. We recognized a tension between
generality, which allows flexibility, and specificity, which
allows the tools to take advantage of specific architectural
features. Thus the first requirement of the placement and
routing tools was that they be specific enough to take

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 3

E-Mail: ignitedmoffice@gmail.com

advantage of the primary features of Triptych. Second, we
required enough generality to allow changes in the design
of the RLB, the local interconnect and the vertical bus
structure.

Flexibility was incorporated into the placement program by
isolating the architecture-specific features to the cost
function. While we could have introduced an architectural
analysis phase that precompiled a cost function based 011
an architectural description, we instead opted for
parameterizing certain aspects of the cost function while
requiring other components such as local routability to be
rewritten for the new architecture.

The routing resources of Triptych were described using the
schematic capture system WireC [McMurchie94]. The
description includes all specifics about the construction of
the RLBs. the segmentation of vertical buses and diagonal
connections. The output of the WireC system is a directed
graph over all routing resources that includes delay
information. Retargeting the router to a new architecture is
a straightforward matter of modifying an existing template
or creating a new one; no code modifications to the router
are required. Indeed, we have retargeted the router to the
Xilinx 3000 architecture and achieved very encouraging
results.

1.3 USING TRIPTYCH

In this section, we present several circuits that we have
mapped by hand to Triptych. The purpose of these
examples is to demonstrate the constraints on routing and
how multilevel logic circuits do indeed map to the physical
structure provided by Triptych. In these examples, each
RLB is shown as a cell with three input entries and three
output entries. Each entry indicates an incoming or
outgoing signal. Note that each block may create a new
signal by computing a logic function over the inputs.
Diagonals and reverse diagonals that are used in the
implementation are highlighted, as are connections to the
channel wires. For clarity, only those vertical wires carrying
signals are shown.

The power of using columns of RLBs for routing only is
shown in this example which rotates a set of 8 bits 4
positions. Each level can be used to send one signal from
each RLB to a neighbor of the final position. Since each
RLB has two outputs, one intermediate RLB column and
two vertical channels are required to route the signals to
their final destination. This generalizes to the case where
three signals are routed per RLB, which requires two
intermediate RLB columns and three channels.
Generalizing this use of the vertical channels suggests a
naive place and route algorithm that alternates columns of

RLBs used for routing with columns used to compute logic
functions.

Subject to a sufficient number of routing tracks, this leads
to a viable routing of arbitrary logic functions. However, as
the next example shows, this scheme is much less area-
efficient than is generally achievable.

State machine example - Figure shows the factored logic
equations and corresponding Triptych implementation for
the ubiquitous traffic light example. This example shows
that circuit mappings can be very

compact if the individual logic blocks are correctly placed.
The inputs and outputs of this circuit are all connected at
the left and right of the array, except for three signals that
use the pin input track of the vertical channels (shown
dangling off the bottom). In this example RLBs are used to
compute logic functions, 2 RLBs are used only for routing,
and 6 RLBs are left unused (these 6 RLBs must be
counted in order to achieve a rectangular mapping; they
might be used in neighboring circuits). Also, this circuit is
assumed to be placed along the left edge of the chip, so
the vertical tracks at that edge are used to connect RLBs in
the same column.

Note that this example would have been easier to map if
the vertical wires could be used to route within a column
anywhere in the chip, not just at the borders, and in fact
such an extension is under consideration. This is about as
compact a Triptych layout as can be expected for a
random logic function.

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 4

E-Mail: ignitedmoffice@gmail.com

Lyon bit-serial multiplier - Although our experience shows
that Triptych can be used to implement a wide range of
circuits, its locally connected structure makes it especially
good for repetitive arrays like bitserial arithmetic circuits.
The Triptych structure has some of the same features
(e.g., nearest neighbor connections) as the Labyrinth
FPGA which was targeted to bit-serial and
pipelined/systolic circuits. We have chosen the Lyon bit-
serial multiplier cell (Lyon 1981) as a representative circuit
from this class. A full n-bit multiplier comprises n copies of
this cell, and signal processing circuits typically make use
of several of these multipliers, containing many individual
cells.

This multiplier cell presents the same classic layout
problem as that faced by VLSI cell designers. The cells

need to tile horizontally so that inputs match outputs and
vertically so that little space is wasted between adjacent
multiplier cells. In this case, however, there is an extra
dimension since a string of multiplier cells will wrap around
the chip on the opposite direction of RLBs. Since there is
one RLB that is used from the opposite direction, the layout
must provide a “hole” into which this RLB can fit.

Note that these two logical RLBs can share a single
physical RLB since they use independent paths through
the RLB. The cost of this multiplier cell design is 12.5 RLBs
which is not much more than the smallest conceivable
design, which costs 11 RLBs. The 0.5 RLB results from the
sharing of one RLB between two vertically adjacent
multiplier cells.

Measurement and comparison - Although our experience
with mapping circuits to Triptych is thus far very limited
since automated placement and routing are still being
developed, we have some preliminary measurements of
the cost of Triptych implementations relative to Labyrinth
and Xilinx. Since the area cost is measured for each FPGA
type in terms of the number of logic blocks used for that
technology, we must first normalize the cost of the different
FPGA logic blocks to be able to compare the different
FPGAs. Although such relative figures are difficult to come
by, we have combined a relative size estimate based on
die size and number of logic blocks, along with the relative
number of program bits to arrive at the following relative
cost figures. Using the cost of the Labyrinth logic block as
the normalized unit cost, we estimate that the cost of a
Triptych RLB is about 4-5 (4.5) units and that of a Xilinx
CLB (configurable logic block) is about 20-25 (22) units.
This places the Triptych logic cell squarely in the middle
between the very cheap Labyrinth cell and the relatively
expensive Xilinx cell.

Table gives the approximate cost of implementing a
number of circuits using all three FPGAs, both in terms of
each technology’s logic blocks and in normalized cost as
defined above. We believe these figures indicate that
Triptych is a promising architecture for a range of different
circuits. These results are of course very preliminary and
many more experiments must be done with other circuits
and using automatic place and route tools.

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 5

E-Mail: ignitedmoffice@gmail.com

Table. Results of mapping three examples: the Lyon bit-
serial multiplier; a traffic light controller; and ISCAS
benchmark s208 the Labyrinth, Xilinx and Triptych.

Issues in mapping to Triptych - We have successfully
mapped a number of regular structures and small control
circuits to the Triptych architecture, and we are currently
working on CAD tools that will automatically perform the
mapping for arbitrary circuits. As with other FPGAs, the
process of mapping a circuit onto Triptych can be
considered to consist of three steps:

• covering: forming a circuit graph containing
function nodes with at most three inputs,

• placement: assigning these function nodes to cell
locations on Triptych, and

• routing: making the connections in the graph
through the available routing on Triptych.

If the circuit to be mapped has a regular structure, as is
encountered in domain-specific applications such as digital
signal processing, an initial pattern for the repeating portion
may be derived by hand. Circuits without regular structure,
or “random logic”, must rely on heuristicbased automatic
placement and routing methods similar to those used by
other FPGAs.

However, because Triptych’s routing resources are highly
constrained, placement and routing must be more closely
integrated than they are in other FPGAs.

For the covering portion of mapping to Triptych, we
assume that a tool such as chortle or mis-pga is available
to express the original circuit as a graph of elementary
gates and then cover the graph’s fanout-free trees with
collections of three-input RLBs (Francis 1991, Murgai
1990). It should be noted, however, that a covering which
minimizes the total number of RLBs may not be optimal
when placement and routing are taken into consideration.
For example, if after placement two of the inputs to a three-
input RLB naturally both occur at a single location distant
from that RLB, it is usually advantageous to split the RLB
into two twoinput functions. If this is possible, we can route
one less signal across the large distance.

Clearly, such situations are not unique to Triptych.
However, we particularly wish to avoid routing extra signals
horizontally whenever it can be avoided. Otherwise, RLBs
become congested with signals they do not use. Such
optimizations are difficult to predict at cover time and thus
need to be attempted during routing.

Because Triptych’s routing resources are limited and fairly
tightly constrained, we believe it is necessary to keep
placement and routing well integrated. Evaluating possible
placements with simple measures of routing length can
lead to placements whose congestion make routing nearly
impossible. Currently, we are exploring iterative
improvement methods for placement which will assign an
RLB only into locations which are adjacent to enough free
tracks to route the RLB’s inputs and outputs. Thus, we
avoid congestion at a local level whenever we place an
RLB.

A complicating factor is that Triptych’s distance metric is
non-symmetric. All pairs of RLBs that face in the same
direction, except those in the same column, have a
distance from the first’s output to the second’s input
different than that of the second’s output to the first’s input.

Also, vertically adjacent blocks have the same routing
distance as diagonally adjacent blocks. For these reasons,
routing distance is not well represented by the x-y
coordinates given to the RLBs. Work is ongoing to develop
an integrated force-directed placement procedure, a
Triptych-specific distance measure, and the congestion
avoiding method mentioned above.

1.4 Results

We have performed experiments using PathFinder
(specifically algorithm NCD) on two different FPGA
architectures. We chose Triptych because the limited
routing resources would expose the limitations of the
algorithm, and Xilinx because this allowed comparison to
an FPGA router currently in wide use.

For both architectures the routing resources were
described using the schematic capture system WireC. The
output of the WireC system is a directed graph over all the
routing resources. All architectural information required by

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 6

E-Mail: ignitedmoffice@gmail.com

PathFinder including delay information is contained in this
directed graph. Retargeting PathFinder to a new
architecture is a straightforward matter of modifying an
existing template or creating a new one; no code
modifications to the router are required. This approach
provides a convenient mechanism for changing
configurations of routing resources and examining the
impact of these changes on the routability of circuits.

Experiments 011 Triptych - The Triptych architecture is an
array of 3-input blocks ([Hauck92]). These blocks, known
as RLBs (Routing and Logic Blocks) contain 3-input LUTs,
as well as routing resources that can route inputs through
blocks to neighboring blocks or onto buses. This approach
is markedly different from other FPGA architectures,
notably Xilinx, which place CLBs in a sea of routing
resources. By comparison, Triptych has considerably fewer
routing resources, many of which connect only nearest
neighbors. The placement problem is obviously coupled
closely to the routing problem. A placement program was
constructed using] a simulated annealing approach, where
the cost function is composed of both a routing distance
metric and a metric that attempts to estimate routing
congestion. Even with these measures of routability
included in the placement cost function. PathFinder has the
difficult problem of allocating the relatively limited routing
resources to signals to achieve feasible source-sink routes.
Factoring in the delay of critical paths obviously
complicates the problem.

Table. Critical path delays for the PREP benchmarks
mapped to Triptych.

The results of our experiments are shown in Tables 1 and
2. Covering with three-input functions was performed with
the SIS mapper. All circuits were mapped to an 8x64 array
of RLBs (512 total RLBs). Table shows the results of
mapping the PREP benchmarks. The number of repetitions
(Reps) of any particular benchmark is determined by th
maximum that will fit in the Sx64 array when routed usin
algorithm NC of Section. This insures a dense circu and is

therefore a good test to determine how well the rout< can
optimize for delay when algorithm NC'D of Section. is used.

The Logic Levels column in the table is the maximur
number of 3-input functions between registers. Optima
Delay is a lower bound to the delay that can be obtaine
given a placement. This number is obtained during the firs
iteration of the router when only the delay term in the co«
function is present. Note that this number may not b
achievable when congestion is resolved due to competitio
between critical routes for the same routing resources. Th
Routed Delay column is the delay of the critical path afte
convergence. % over optimal is the % degradation of th
Routed Delay from the Optimal Delay, which average
2.1%, and is at worst 4.7%.

Table. Critical path delays for selected circuits from
ISCAS93 mapped to Triptych.

Table shows the results of running PathFinder on
benchmarks obtained from ISCAS93. All circuits in the
benchmark suite were included that utilized between 25%
and 50% of the 8x64 array for logic (i.e. between 128 and
256 RLBs). In this case the delay degradation from optimal
is an average of 4.6%? and is at worst 12.6%. The only
other work quoting delay degradation from optimal is that
of [Frankle92], in which an average degradation of 16% is
found on the Xilinx 4000 architecture.

REFERENCES

[1] Ahrens, M., Gamal, A., “An FPGA Family
Optimized for High Densities and Reduced Routing
Delay,”Actel Corporation, IEEE Custom Integrated Circuits
Conference, 1990.

Journal of Advances in Science and Technology

Vol. III, No. V, May-2012, ISSN 2230-9659

Available online at www.ignited.in Page 7

E-Mail: ignitedmoffice@gmail.com

[2] Atmel “Configurable Logic Design and Application
Handbook” , 1995.

[3] Black, P, Meng. T., “A 140 mb/s 32 State, Radix 4
Viterbi Decoder,” IEEE Journal of Solid State Circuits Vol.
27, No. 12, December 1992, pp. 1877-1885.

[4] Bowhill, W., et al, “A 433 MHz 64b Quad Issue
RISC Microprocessor,” IEEE Journal of Solid State
Circuits, Vol 31, No. 11, November 1996, pp ##.

[5] Brebner, G. , “Configurable Array Logic Circuits for
Computing Network Error Detection Codes,” Journal of
VLSI Signal Processing, 6, 1993, pp. 101-117.

[6] Chandrakasan, A. , “Low Power Digital CMOS
Design,” PhD. Thesis, U.C. Berkeley, August 1994.

[7] CLAy Family Introduction Datasheet, National
Semiconductor, June 1994.

[8] DeHon, A. , “Reconfigurable Architectures for
General Purpose Computing,” M.I.T. PhD Thesis, A.I.
Technical Report 1586, October 1996.

[9] Dobbelaere, I. , Horowitz, M. , Gamal, A. ,
“Regenerative Feedback Repeaters for Programmable
Interconnections”, ISSSC Digest of Technical Sections
1995, p.116- 117.

[10] Farrhi, A. , Sarrafzadeh, M. , “FPGA Technology
Mapping for Power Minimization,” International Workshop
on Field-Programmable Logic and Applications, FPL ‘94.
Proceedings, Springer-Verlag, 1994. p. 66-77.

[11] Gamal, A. , et al., “An Architecture for Electrically
Configurable Gate Arrays,” IEEE Journal of Solid-State
Circuits, Vol. 24, No. 2, April 1989, pp 394-398.

[12] George, V. , The Effect of Logic Block Granularity
on Interconnect power in a Reconfigurable Logic Array”,
CS 294 report, May 1997.

[13] Goto, G., et al “A 4.1ns Compact 54x54 Multiplier
Utilizing Sign-Select Booth Encoders,” IEEE Journal of
Solid State Circuits, Vol 32, No. 11, November 1997, pp
1676-1683.

[14] Hauck, S., Borriello, G., Ebeling, C. , “Triptych: An
FPGA Architecture with Integrated Logic and Routing”, in
Advanced Research in VLSI and Parallel Systems:
Proceedings of the 1992 Brown/MIT Conference, pp. 26-
43, March 1992.

[15] Infopad Project, U.C. Berkeley,
http://infopad.EECS.Berkeley.EDU/infopad

[16] Izumikawa, M. , et al., “A 0.25um CMOS 0.9v 100-
MHz DSP Core,” IEEE Journal of Solid-State Circuits, Vol.
32, No. 1, January 1997, p. 52-60.

 [17] Jou, S., et al, “A Pipelined Multiply-Accumulator
using a High-Speed Low-Power Static and Dynamic Full
Adder Design,” IEEE Journal of Solid State Circuits, Vol
32, No. 11, November 1997, pp ##.

[18] Kaushik, R., Prasad, S., “FPGA Technology
Mapping for Power Minimization,” International Workshop
on Field-Programmable Logic and Applications, FPL ‘94.
Proceedings, Springer-Verlag, 1994. p. 57-65.

