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BACKGROUND 

Field-programmable gate arrays (FPGAs) have quickly 
become an important medium for the implementation of 
digital logic. These arrays exploit the increasing capacity of 
integrated circuits to provide designers with reconfigurable 
logic that can be programmed on an application-specific 
basis. This drastically increases flexibility in both the 
design process and the final artifact by permitting one 
board-level design to perform many functions, or to be 
upgraded in the field. 

Almost all of the FPGAs currently available - and certainly 
all of the dominant ones - are based 011 a strict separation 
between logic and routing resources which pervades from 
the architecture itself to the tools employed in mapping 
designs. This closely parallels the development of 
integrated circuit gate arrays, arrays that utilize a few metal 
layers for customization. A similar distinction was made 
between logic cells and the routing resources that 
interconnect them. The strict separation was too confining, 
eventually leading to the sea-of-gates approach. 
Conceptually, the difference is that in a sea-of-gates the 
split between logic and routing area can be made 011 a 
per-mapping basis. This permits applications with regular 
logic structures to more efficiently utilize silicon area, while 
still permitting the use of many wires (at the expense of 
logic) for random logic circuits. 

FPGAs are at a similar point today. As with mask-
programmable gate arrays, an ever larger proportion of the 
silicon area is being devoted to routing resources to ensure 
that more and more designs are routable. Furthermore, the 
logic cells are becoming ever more complex, attempting to 
perform coarser-grain functions and lighten the load 011 
the routing resources, but often end up being under-
utilized. As was the case for gate arrays, it is now time to 
evaluate the logic/routing tradeoff in FPGA architectures. 

We have developed the Triptych FPGA architecture, which 
can be viewed as an FPGA in the sea-of-gates style. 
Triptych addresses the two fundamental efficiency 
problems with current FPGAs: increasing routing area and 
decreasing cell utilization. The innovations include the 
flexible allocation of logic cells to either logic or routing 

functions, an array structure that more closely matches the 
wide shallow structure of most logic functions, and fine- 
grain cells that can be connected to form larger structures 
through short, fast local wires. 

The rest of the section is divided into four major sections. 
Section provides the details of the Triptych architecture
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and explains the rationale underlying the design decisions. 
Section describes some variations 011 the base 
architecture, including the first FPGA to fully support the 
implementation of asynchronous systems. Section 
completes the body of the section by presenting a 
methodology for comparing FPGA architectures, and 
demonstrates Triptych's advantages. Finally, section 
finishes with some conclusions. 

1.1 The Triptych Architecture 

The overall goal motivating the development of the 
architectures described in this section was to reduce the 
significant cost paid for routing in standard FPGAs. The 
approach taken is twofold. First, instead of having a strong 
separation between logic and routing resources, with the 
percentage of each fixed in the architecture, the resources 
are combined in a way that allows the tradeoff of logic and 
routing resource on a per-mapping basis. This is done by 
replacing the logic blocks of standard architectures with 
Routing & Logic Blocks (RLBs), which perform both logic 
and routing tasks. The second modification is to match the 
structure of the logic array to that of the target circuits, 
rather than providing an array of logic cells embedded in a 
general routing structure. Most circuits are wide and 
shallow, with large fan-in/fanout trees. By matching the 
physical structure to this logical structure, we reduce the 
amount of “random” routing that is otherwise required. 

The Triptych routing structure is shown in figure. Short, fast 
connections are provided between cells in a checkerboard 
pattern, with signals flowing from left to right. This basic 
structure is augmented with segmented routing channels 
between the columns that facilitate larger fanout structures 
than is possible in the basic array. 

Finally, two copies of the array, flowing in opposite 
directions, are overlaid. Connections between the planes 
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exist at the crossover points of the short diagonal wires. It 
is clear that this array does not allow arbitrary point-to-point 
routing like that associated with the Xilinx FPGA. However, 
we claim that this array matches the form of a large class 
of circuits, and that a mapping strategy that takes this 
structure into account can produce routable 
implementations1. Such an approach will use the fast 
diagonal connections for critical paths, while less critical 
signals can be routed longer distances via segments for 
vertical movement, and unused RLB inputs for horizontal 
movement. 

A Triptych RLB is capable of performing both function 
calculation and routing tasks simultaneously, which leads 
to several different uses of the RLB. The three most 
obvious are: (a) a routing block with each input connected 
to one of the outputs; (b) a splitter with one of the inputs 
going to two or three of the outputs; and (c) as a function 
calculator with the three inputs going to the function block 
and the function going out the outputs. 

However, there are two important classes of hybrids that 
help produce more compact designs. The first comes from 
the observation that in blocks used to calculate a three-
input function, the function block value will most likely not 
go out all three outputs, and one or two of the input signals 
could be sent out the unused output connection(s), as in 
(d). Secondly, a function of two inputs can be implemented 
by making the function insensitive to the third input, thus 
allowing the unused input to be used to route an arbitrary 
signal, as in (e). An important observation is that the RLBs 
will never need to be used for one-input functions (i.e., an 
inverter), since any output signal will only be used either as 
an input to another arbitrary function block, where the 
inverter could be merged into the function computed, or to 
an output pin, where an optional inversion can be applied. 

 

As was shown earlier, the Triptych FPGA has no global 
routing for moving signals horizontally. Instead, there is a 
heavy reliance on unused RLBs and unused portions of 
RLBs to perform these routing tasks. 

The structure detailed above differs little from Triptych’s 
initial conception. With the experience we have gained with 
the original Triptych architecture, with placement and 
routing tools, and with asynchronous and interfaced 

synchronous circuits, we have extended this architecture. 
These extensions can be grouped into two classes, 4-input 
4-output RLBs, and asynchronous support, with the 
architecture for asynchronous circuits named “Montage”. 

 

Figure. A 4-input, 4-output RLB. The segmented channel 
input is split into two separate inputs, to allow for greater 
routeability. Muxes are also added to the function block 
inputs to choose three of the four RLB inputs for function 
calculation. 

1.2. The Interdependence of Architecture and Tools 

It is important when developing a new FPGA architecture 
to ensure that the mapping tools will be able to take 
advantage of it. There is a strong analogy between 
processor architecture and compilers. Architectural 
features that tools cannot handle are not useful. Thus, it is 
impossible to evaluate an architecture or a set of tools in 
isolation. They are sufficiently interdependent that they 
must be developed and evaluated together. An unfortunate 
result is that some architectural features that may be 
valuable in their own right may be discarded because 
current tools cannot support them sufficiently. With 
increasingly sophisticated tools, previously discounted 
architectural ideas may become viable. 

We structured the Triptych tools to support architecture 
development. Both the placement and routing programs 
were optimized for flexibility and not performance in terms 
of CPU time. It was more important to be able to retarget 
the tools quickly to evaluate variants 011 the Triptych 
architecture than to have the fastest turn-around time for 
individual tool runs. We recognized a tension between 
generality, which allows flexibility, and specificity, which 
allows the tools to take advantage of specific architectural 
features. Thus the first requirement of the placement and 
routing tools was that they be specific enough to take 
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advantage of the primary features of Triptych. Second, we 
required enough generality to allow changes in the design 
of the RLB, the local interconnect and the vertical bus 
structure. 

Flexibility was incorporated into the placement program by 
isolating the architecture-specific features to the cost 
function. While we could have introduced an architectural 
analysis phase that precompiled a cost function based 011 
an architectural description, we instead opted for 
parameterizing certain aspects of the cost function while 
requiring other components such as local routability to be 
rewritten for the new architecture. 

The routing resources of Triptych were described using the 
schematic capture system WireC [McMurchie94]. The 
description includes all specifics about the construction of 
the RLBs. the segmentation of vertical buses and diagonal 
connections. The output of the WireC system is a directed 
graph over all routing resources that includes delay 
information. Retargeting the router to a new architecture is 
a straightforward matter of modifying an existing template 
or creating a new one; no code modifications to the router 
are required. Indeed, we have retargeted the router to the 
Xilinx 3000 architecture and achieved very encouraging 
results. 

1.3 USING TRIPTYCH 

In this section, we present several circuits that we have 
mapped by hand to Triptych. The purpose of these 
examples is to demonstrate the constraints on routing and 
how multilevel logic circuits do indeed map to the physical 
structure provided by Triptych. In these examples, each 
RLB is shown as a cell with three input entries and three 
output entries. Each entry indicates an incoming or 
outgoing signal. Note that each block may create a new 
signal by computing a logic function over the inputs. 
Diagonals and reverse diagonals that are used in the 
implementation are highlighted, as are connections to the 
channel wires. For clarity, only those vertical wires carrying 
signals are shown. 

The power of using columns of RLBs for routing only is 
shown in this example which rotates a set of 8 bits 4 
positions. Each level can be used to send one signal from 
each RLB to a neighbor of the final position. Since each 
RLB has two outputs, one intermediate RLB column and 
two vertical channels are required to route the signals to 
their final destination. This generalizes to the case where 
three signals are routed per RLB, which requires two 
intermediate RLB columns and three channels. 
Generalizing this use of the vertical channels suggests a 
naive place and route algorithm that alternates columns of 

RLBs used for routing with columns used to compute logic 
functions. 

Subject to a sufficient number of routing tracks, this leads 
to a viable routing of arbitrary logic functions. However, as 
the next example shows, this scheme is much less area-
efficient than is generally achievable. 

State machine example - Figure shows the factored logic 
equations and corresponding Triptych implementation for 
the ubiquitous traffic light example. This example shows 
that circuit mappings can be very 

compact if the individual logic blocks are correctly placed. 
The inputs and outputs of this circuit are all connected at 
the left and right of the array, except for three signals that 
use the pin input track of the vertical channels (shown 
dangling off the bottom). In this example RLBs are used to 
compute logic functions, 2 RLBs are used only for routing, 
and 6 RLBs are left unused (these 6 RLBs must be 
counted in order to achieve a rectangular mapping; they 
might be used in neighboring circuits). Also, this circuit is 
assumed to be placed along the left edge of the chip, so 
the vertical tracks at that edge are used to connect RLBs in 
the same column. 

Note that this example would have been easier to map if 
the vertical wires could be used to route within a column 
anywhere in the chip, not just at the borders, and in fact 
such an extension is under consideration. This is about as 
compact a Triptych layout as can be expected for a 
random logic function. 
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Lyon bit-serial multiplier - Although our experience shows 
that Triptych can be used to implement a wide range of 
circuits, its locally connected structure makes it especially 
good for repetitive arrays like bitserial arithmetic circuits. 
The Triptych structure has some of the same features 
(e.g., nearest neighbor connections) as the Labyrinth 
FPGA which was targeted to bit-serial and 
pipelined/systolic circuits. We have chosen the Lyon bit-
serial multiplier cell (Lyon 1981) as a representative circuit 
from this class. A full n-bit multiplier comprises n copies of 
this cell, and signal processing circuits typically make use 
of several of these multipliers, containing many individual 
cells. 

This multiplier cell presents the same classic layout 
problem as that faced by VLSI cell designers. The cells 

need to tile horizontally so that inputs match outputs and 
vertically so that little space is wasted between adjacent 
multiplier cells. In this case, however, there is an extra 
dimension since a string of multiplier cells will wrap around 
the chip on the opposite direction of RLBs. Since there is 
one RLB that is used from the opposite direction, the layout 
must provide a “hole” into which this RLB can fit. 

Note that these two logical RLBs can share a single 
physical RLB since they use independent paths through 
the RLB. The cost of this multiplier cell design is 12.5 RLBs 
which is not much more than the smallest conceivable 
design, which costs 11 RLBs. The 0.5 RLB results from the 
sharing of one RLB between two vertically adjacent 
multiplier cells. 

Measurement and comparison - Although our experience 
with mapping circuits to Triptych is thus far very limited 
since automated placement and routing are still being 
developed, we have some preliminary measurements of 
the cost of Triptych implementations relative to Labyrinth 
and Xilinx. Since the area cost is measured for each FPGA 
type in terms of the number of logic blocks used for that 
technology, we must first normalize the cost of the different 
FPGA logic blocks to be able to compare the different 
FPGAs. Although such relative figures are difficult to come 
by, we have combined a relative size estimate based on 
die size and number of logic blocks, along with the relative 
number of program bits to arrive at the following relative 
cost figures. Using the cost of the Labyrinth logic block as 
the normalized unit cost, we estimate that the cost of a 
Triptych RLB is about 4-5 (4.5) units and that of a Xilinx 
CLB (configurable logic block) is about 20-25 (22) units. 
This places the Triptych logic cell squarely in the middle 
between the very cheap Labyrinth cell and the relatively 
expensive Xilinx cell. 

Table gives the approximate cost of implementing a 
number of circuits using all three FPGAs, both in terms of 
each technology’s logic blocks and in normalized cost as 
defined above. We believe these figures indicate that 
Triptych is a promising architecture for a range of different 
circuits. These results are of course very preliminary and 
many more experiments must be done with other circuits 
and using automatic place and route tools. 
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Table. Results of mapping three examples: the Lyon bit-
serial multiplier; a traffic light controller; and ISCAS 
benchmark s208 the Labyrinth, Xilinx and Triptych. 

Issues in mapping to Triptych - We have successfully 
mapped a number of regular structures and small control 
circuits to the Triptych architecture, and we are currently 
working on CAD tools that will automatically perform the 
mapping for arbitrary circuits. As with other FPGAs, the 
process of mapping a circuit onto Triptych can be 
considered to consist of three steps: 

•  covering: forming a circuit graph containing 
function nodes with at most three inputs, 

•  placement: assigning these function nodes to cell 
locations on Triptych, and 

•  routing: making the connections in the graph 
through the available routing on Triptych. 

If the circuit to be mapped has a regular structure, as is 
encountered in domain-specific applications such as digital 
signal processing, an initial pattern for the repeating portion 
may be derived by hand. Circuits without regular structure, 
or “random logic”, must rely on heuristicbased automatic 
placement and routing methods similar to those used by 
other FPGAs. 

However, because Triptych’s routing resources are highly 
constrained, placement and routing must be more closely 
integrated than they are in other FPGAs. 

For the covering portion of mapping to Triptych, we 
assume that a tool such as chortle or mis-pga is available 
to express the original circuit as a graph of elementary 
gates and then cover the graph’s fanout-free trees with 
collections of three-input RLBs (Francis 1991, Murgai 
1990). It should be noted, however, that a covering which 
minimizes the total number of RLBs may not be optimal 
when placement and routing are taken into consideration. 
For example, if after placement two of the inputs to a three-
input RLB naturally both occur at a single location distant 
from that RLB, it is usually advantageous to split the RLB 
into two twoinput functions. If this is possible, we can route 
one less signal across the large distance. 

Clearly, such situations are not unique to Triptych. 
However, we particularly wish to avoid routing extra signals 
horizontally whenever it can be avoided. Otherwise, RLBs 
become congested with signals they do not use. Such 
optimizations are difficult to predict at cover time and thus 
need to be attempted during routing. 

Because Triptych’s routing resources are limited and fairly 
tightly constrained, we believe it is necessary to keep 
placement and routing well integrated. Evaluating possible 
placements with simple measures of routing length can 
lead to placements whose congestion make routing nearly 
impossible. Currently, we are exploring iterative 
improvement methods for placement which will assign an 
RLB only into locations which are adjacent to enough free 
tracks to route the RLB’s inputs and outputs. Thus, we 
avoid congestion at a local level whenever we place an 
RLB. 

A complicating factor is that Triptych’s distance metric is 
non-symmetric. All pairs of RLBs that face in the same 
direction, except those in the same column, have a 
distance from the first’s output to the second’s input 
different than that of the second’s output to the first’s input. 

Also, vertically adjacent blocks have the same routing 
distance as diagonally adjacent blocks. For these reasons, 
routing distance is not well represented by the x-y 
coordinates given to the RLBs. Work is ongoing to develop 
an integrated force-directed placement procedure, a 
Triptych-specific distance measure, and the congestion 
avoiding method mentioned above. 

1.4 Results 

We have performed experiments using PathFinder 
(specifically algorithm NCD) on two different FPGA 
architectures. We chose Triptych because the limited  
routing resources would expose the limitations of the 
algorithm, and Xilinx because this allowed comparison to 
an FPGA router currently in wide use. 

For both architectures the routing resources were 
described using the schematic capture system WireC. The 
output of the WireC system is a directed graph over all the 
routing resources. All architectural information required by 
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PathFinder including delay information is contained in this 
directed graph. Retargeting PathFinder to a new 
architecture is a straightforward matter of modifying an 
existing template or creating a new one; no code 
modifications to the router are required. This approach 
provides a convenient mechanism for changing 
configurations of routing resources and examining the 
impact of these changes on the routability of circuits. 

Experiments 011 Triptych - The Triptych architecture is an 
array of 3-input blocks ([Hauck92]). These blocks, known 
as RLBs (Routing and Logic Blocks) contain 3-input LUTs, 
as well as routing resources that can route inputs through 
blocks to neighboring blocks or onto buses. This approach 
is markedly different from other FPGA architectures, 
notably Xilinx, which place CLBs in a sea of routing 
resources. By comparison, Triptych has considerably fewer 
routing resources, many of which connect only nearest 
neighbors. The placement problem is obviously coupled 
closely to the routing problem. A placement program was 
constructed using] a simulated annealing approach, where 
the cost function is composed of both a routing distance 
metric and a metric that attempts to estimate routing 
congestion. Even with these measures of routability 
included in the placement cost function. PathFinder has the 
difficult problem of allocating the relatively limited routing 
resources to signals to achieve feasible source-sink routes. 
Factoring in the delay of critical paths obviously 
complicates the problem. 

 

Table. Critical path delays for the PREP benchmarks 
mapped to Triptych. 

The results of our experiments are shown in Tables 1 and 
2. Covering with three-input functions was performed with 
the SIS mapper. All circuits were mapped to an 8x64 array 
of RLBs (512 total RLBs). Table shows the results of 
mapping the PREP benchmarks. The number of repetitions 
(Reps) of any particular benchmark is determined by th 
maximum that will fit in the Sx64 array when routed usin 
algorithm NC of Section. This insures a dense circu and is 

therefore a good test to determine how well the rout< can 
optimize for delay when algorithm NC'D of Section. is used. 

The Logic Levels column in the table is the maximur 
number of 3-input functions between registers. Optima 
Delay is a lower bound to the delay that can be obtaine 
given a placement. This number is obtained during the firs 
iteration of the router when only the delay term in the co« 
function is present. Note that this number may not b 
achievable when congestion is resolved due to competitio 
between critical routes for the same routing resources. Th 
Routed Delay column is the delay of the critical path afte 
convergence. % over optimal is the % degradation of th 
Routed Delay from the Optimal Delay, which average 
2.1%, and is at worst 4.7%. 

 

Table. Critical path delays for selected circuits from 
ISCAS93 mapped to Triptych. 

Table shows the results of running PathFinder on 
benchmarks obtained from ISCAS93. All circuits in the 
benchmark suite were included that utilized between 25% 
and 50% of the 8x64 array for logic (i.e. between 128 and 
256 RLBs). In this case the delay degradation from optimal 
is an average of 4.6%? and is at worst 12.6%. The only 
other work quoting delay degradation from optimal is that 
of [Frankle92], in which an average degradation of 16% is 
found on the Xilinx 4000 architecture. 
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