

REVIEW ARTICLE

Study of Political Representations: Diplomatic
Missions of Early Indian to Britain

Journal of
Advances and

Scholarly

Researches in
Allied Education

Vol. 3, Issue 6,
April-2012,

ISSN 2230-7540

Journal of Advances in
Science and Technology

Vol. IV, No. VII, November-
2012, ISSN 2230-9659

REVIEW ARTICLE

FRAMEWORK FOR WEB BASED
OPERATING SYSTEMS

www.ignited.in

Ruchi Agarwal

w
w

w
.i

gn
it

e
d

.i
n

1

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

Framework for Web Based Operating Systems

Ruchi Agarwal

Research Scholar, Pacific University, Udaipur, Rajasthan, India

---------------------------♦-----------------------------

1.1 COMPONENTS OF WBOS

1.1.1 CLIENT/SERVER ARCHITECTURES

In general, web applications have either two-tier or
three-tier client/server architectures. The two-tier
architecture was developed in the 1980s from the file
server software architecture design. Its intention is to
improve usability by supporting a form-based user
interface. It also improves flexibility and scalability by
allocating the two tiers over the computer network. The
three-tier (multi-tier) architecture emerged in the
1990s, with a middle tier in-between the user interface
and the data management server. This middle tier
provides process management and is the place where
the business logic and rules are executed. Compared
with the two-tier architecture, the multi-tier architecture
increases the scalability and flexibility of web
applications.

Generally, computers on a network can be categorized
into two types: clients and servers. Typically, a client is
an application that runs on a personal computer or
workstation and relies on a server to perform some
operations. A server is a computer or device on a
network that manages network resources and provides
services. For example, a file server is a computer
dedicated to storing files. Any user on the network can
store files onto the server. A print server is a computer
that manages one or more printers, and a network
server is a computer that manages network traffic. This
means, machines that provide services to other
machines are servers. The machines that connect to
those services are clients. For instance, a database
server accepts requests for data from clients and
returns the results to the clients. The clients
manipulate the data and present results to the user.

1.1.2 TWO-TIER ARCHITECTURE

In a two-tier architecture of software systems (see
Figure 4.1) server software runs on a large server
machine. Client machines connect to the server via a
network and make requests of the server as
necessary. In this approach, each client machine
needs client software installed locally. It works well in
relatively homogeneous environments, where
application logics (business rules) do not change very
often.

Figure 1.1 : Two-tier architecture of Client – Server
model

The two-tier architecture improves flexibility and
scalability by distributing the two tiers over the
network. However, there are obvious limitations with
the two-tier software architecture. For example, the
client requires a custom application to be written that
then needs to be deployed on every client machine.
Since the presentation logic and business rules are
usually located in the client application, even the
smallest change to an application might require a
complete rollout to the entire system.

1.1.3 THREE-TIER ARCHITECTURE

The three-tier architecture consists of three well-
defined and separate processes, each running on a
different platform as shown in Figure 4.2 . The first
tier is referred to as the user interface, which runs on
the user's computer (the client). The middle tier
consists of the application or business logic, which
runs on a server and is often called application
server. The other tier contains the data that is needed
for the application, which is usually a database
management system (DBMS) that stores the data
required by the middle tier.

This tier runs on another server called the database
server. The three-tier design has many advantages
over the traditional two-tier system. For example,
separating presentation logic from business rules

Ruchi Agarwal

w
w

w
.i

g
n

it
e

d
.i
n

2

 Framework for Web Based Operating Systems

makes it easier to modify or replace one tier without
affecting the others.

Figure 1.2 : Three tier architecture of Client – Server
model

The three-tier architecture has been used successfully
since the early 1990s in commercial and military
distributed client/server environments, where
distributed information computing is required in a
heterogeneous environment.

1.2 ABSTRACT MODEL OF WBOS

WBOS is a multi-tier web application using CORBA as
a distributed object framework. This means that it is
designed and implemented using a multi-tier
client/server architecture with distributed object
technology. Unlike many other web applications,
WBOS is a specific web application for industrial
process control and production monitoring. Therefore,
the architecture of WBOS is different from those of
generic web applications even though it adopts some
of the existing technologies, such as multi-tier
client/server architectures, and distributed object
technologies.

1.2.1 OVERVIEW OF STRUCTURE

An overview of the application architecture is shown in
Figure 4.3. WBOS is viewed as a collection of
computer nodes that are communicating and
cooperating to reach a common goal. The nodes in
WBOS are geographically dispersed across the
Internet/intranet.

Nodes can be homogeneous or heterogeneous. We
adopted the heterogeneous architecture, because
nodes in WBDCS may have different hardware
architectures and software configurations, such as
PCs running Windows and Sun workstation running
Solaris.

The devices that are connected to nodes may be
different such as controllers, data acquisition systems,
radio remote control devices, OS, and DBMS.

A homogeneous system can be considered a special
case of the heterogeneous systems.

Figure 1.3 : Application architecture of WBOS

The system also allows users to integrate their existing
applications, such as PLC, DCS, into a web-enabled
distributed system by wrapping them with CORBA
objects. These objects can then make calls to legacy
systems and expose them to the Internet/intranet.

NODES

The nodes in WBDCS are PCs and/or workstations
connected to one or more devices. Each node may
have different hardware and software configurations
with different devices connected. This allows
WBDCS to be a flexible heterogeneous system. All
nodes in WBDCS can communicate with each other
across the Internet/intranet. A node can be a client
when it is sending a request to another node; on the
other hand, it can also be a server when it provides a
service to other nodes in the system. A client node
does not need to install any client application in order
to be able to access any other nodes because the
system is designed using applets as GUIs that are
automatically downloaded from a web server in
WBDCS.

1.2.2 THE ARCHITECTURE OF WBOS

WBDCS is designed using a web-based multi-tier
client/server software architecture and CORBA
technology. As mentioned in earlier section , two-tier
architectures have problems with maintainability. The
need to install the client application on every client
machine can be costly depending on how many
clients there are and how often updates will be
made. The web-based multi-tier distributed object
architecture attempts to address this issue.

1.2.3 WEB-BASED MULTI-TIER APPROACH

WBOS is designed using a multi-tier client/server
software architecture with a web application
approach. It consists of a web server and an IIOP
gateway, control servers, devices, and a database.
Its architecture is depicted in Figures 1.5 and 1.4
using different points of view. It is a multi-tier web

Ruchi Agarwal

w
w

w
.i

gn
it

e
d

.i
n

3

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

application, which includes a client tier, a middle tier,
and a data tier as illustrated in Figure 1.2 .

The web server (Apache HTTP Server or VisiBroker
Gatekeeper) is where the applets are located. The
IIOP gateway (VisiBroker Gatekeeper) is an OMG-
CORBA compliant GIOP proxy server, which enables
CORBA clients and servers to communicate across
networks, while still conforming to security restrictions
imposed by Internet browsers, firewalls and Java
sandbox security.

Figure 1.4 : WBOS Architecture

Figure 1.5 : 3 tier Architecture of WBOS

1.3 3 TIER ARCHITECTURE OF WBOS

The control servers are usually located in nodes. They
are the middle tier between client and data tiers. They
provide two parts of services. One is control service;
the other is information management service. The
control service includes sampling, processing and
responding services. The information management
service includes storing real-time data into the
database and updating real-time data on client GUIs in
a certain period of time.

A user may access the application by navigating to the
node's URL using a web browser on a client machine.
Applets are downloaded from the web server and run
in a user’s browser. The prime advantage of this web-
based approach is that all code associated with the
client tier is downloaded dynamically from the web
server. There is usually no need to install any

application-specific software on the client machine.
This greatly reduces long-term maintenance costs.

1.3.1 DISTRIBUTED OBJECT APPROACH

A distributed object system is a system in which all
entities are modeled as objects. It is a popular
paradigm for object-oriented distributed applications.
CORBA is a standard framework for distributed object
systems. It allows a distributed, heterogeneous
collection of objects to interoperate across a network.

Distributed object technology allows large server
programs to be broken down into several smaller
server objects. Each object can potentially reside on
a different machine on the network. Server objects
can even be run on small desktop computers rather
than on a large server machine. Since distributed
objects allow applications to be split into lightweight
pieces that can be executed on separate machines,
less powerful machines can run heavily demanding
applications [8]

1.3.2 ANALYSIS OF THE APPROACHES

The growing popularity of distributed object
technologies has been driven by several problems
with the two-tier client/server approach, which include
the following:

Scalability - This term refers to how easily a particular
solution can be extended from a small-scale
application to a large-scale one. Many applications
work well with just a few functions and users, but fall
apart when having to support large numbers of
functions and users. Also, some applications perform
well on a Local Area Network (LAN), but may not
work well on a Wide Area Network (WAN).

Maintainability - This term refers to how costly it is to
administer a particular solution, which includes costs
associated with updating the software and distributing
updated versions to client machines. By using web-
based distributed object technologies, the above
problems can be minimized and sometimes
eliminated. There is usually no need to design
complex infrastructure software that improves
scalability and maintainability: the necessary
infrastructure already exists, and web-based
distributed object technologies take advantage of that
fact.

As described above, the advantages of using a web-
based distributed object solution are obvious.
However, there are also disadvantages compared to
a two-tier client/server solution. The two-tier solution
is the simplest approach: client applications talk
directly to servers. The web-based distributed object
approach requires the use of web servers, web
browsers, and intermediate server objects. The extra

Ruchi Agarwal

w
w

w
.i

g
n

it
e

d
.i
n

4

 Framework for Web Based Operating Systems

layers of software improve the scalability and
maintainability of the system, but at the cost of
simplicity. There are also disadvantages compared to
a non web-based distributed object solution. The
primary means of dynamically downloading code into a
browser used in this system are Java applets. Using
Java applets introduces the following disadvantages:

Security - Running an applet using a browser has
certain security restrictions. Therefore, most
dynamically downloaded applet code cannot do all of
the things that a standalone client application can do.
This issue will be discussed in the following
subsection.

Performance during initialization - Because client
application code must be downloaded from a web
server, initialization time is much longer than that of a
standalone application.

Increased network traffic - Downloading an applet (thin
client) from a web server usually increases network
traffic compared to a standalone version of the same
client application installed on a client machine. But it
might not increase the traffic if a client application
contains both presentation logic and business rules
like the two-tier client/server solution in section 4.1.

Run-time performance - Java “bytecode” was designed
to work in any browser on any platform. It must be
interpreted by the JVM in a browser, and converted to
native machine instructions. This conversion process
could potentially decrease performance of
applications. Standalone applications are usually in the
form of compiled code, which requires no interpreter.
In most cases, these disadvantages are acceptable
given the great number of advantages.

1.3.3 APPLET SECURITY ISSUES

Applets are used as client GUIs by dynamically
downloading from the web server in WBOS. In addition
to the disadvantages mentioned above, there are
some primary security restrictions imposed on Java
applets such as file I/O, printing and network access. It
is referred to as the Java “Sandboxing” security model,
which limits the applets’ effectiveness in distributed
object applications. Network access restrictions are as
follows:

• An applet can only establish network
connections with the host that served the
applet.

• An applet can only accept network
connections from the host that served the
applet.

In other words, Java “Sandboxing” security prevents
Java applets from communicating with server objects
located on servers other than the ones running on the
host from which the applets were downloaded.

These network restrictions create a big problem for
CORBA application. CORBA provides location
transparency, that is, as long as a client holds an
Interoperable Object Reference (IOR), it can invoke
operations on a server object, regardless of the
location of the server object. Applet sandboxing breaks
CORBA location transparency [1].

Figure 1.6 : IIOP gateway model for WBOS

These restrictions can be solved by using an IIOP
gateway on a web server as illustrated in Figure 4.6,
such as VisiBroker Gatekeeper. The IIOP gateway
acts as a proxy for the CORBA object by sending
requests to the object and passing responses back
to the applets. Without the IIOP gateway, Java
applets will only be able to use references to objects
that reside on the web server host.

1.4 THE DESIGN OF WBOS

The software architecture of WBOS is not only
concerned with structure and behaviour, but also
with usability and functionality. By using UML, the
system architecture can be modeled from different
perspectives in order to visualize, specify, construct,
and document the system.

1.4.1 FUNCTIONAL DESCRIPTIONS

The use cases of the system describe aspects of
behaviour of the system as seen by its end users or
testers. UML allows the static aspects of the system
to be captured in use case diagrams and the
dynamic aspects of the system to be captured in
activity diagrams.

A use case diagram [9] is a description of a set of
sequences of actions. An actor represents a
coherent set of roles that users of use cases play
when interacting with these use cases. Typically, an
actor represents a role that a human, a hardware
device, or even another system plays.

An activity diagram [9] is one kind of UML diagram
used for modeling the dynamic aspects of a system.
It emphasizes the flow of control from activity to
activity.

An activity is an ongoing non-atomic execution within
a state machine. Activities ultimately result in some

Ruchi Agarwal

w
w

w
.i

gn
it

e
d

.i
n

5

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

action, which is made up of excitable atomic
computations that result in a change in state of the
system or the return of a value.

As illustrated in Figure 1.7, there are four actors in
WBDCS. The user represents a role that interacts with
the system. The database is an information
management system, which stores the configuration
and operation information of the system. The sensor is
a device that measures process variables from a
physical environment. The actuator is a device that
performs an action towards the physical environment.

Figure 1.7 : Use case diagram for WBOS

Sensor, control, actuator, and DB objects are made up
of CORBA server objects called the control server tier
in WBDCS. The sensor object is responsible for
acquiring data from the sensor, passing them to the
control object and user. The actuator object is
responsible for writing data from the user or control
object to the actuator. The control object is a controller
that processes sampled data and produces a
response to the actuator object. The DB object is
responsible for collecting data from the control object
and for storing them in a database.

Login, query, configuration, output, and input are the
client tier in WBDCS. Five use cases have been
identified in Figure 4.7. These use cases will be
described in detail in the following subsections.

1.4.1.1 LOGIN

In this use case, a user has to login the system before
using it. The user’s information will be verified to make
sure that the user has the authority to use the system.

Figure 1.8 : Login Activity flow in WBOS

In Figures 1.8, a user is the actor who initializes the
use case. The user name and password will be sent
to the DB server object via the network, and the DB
object will check if they are the same as the ones
stored in the database. The DB object will notify the
user about the result of the check in one of two
possible ways: one is the welcome information, which
means the user information is valid; the other is a
warning message, which means that user name
and/or password were wrong.

1.4.1.2 INPUT

The input process, as depicted in Figures 1.9 and
1.10, is defined as reading data from the sensor. In
this use case, the user will first select the input
channels and then send an input request to the
sensor object. The sensor object will get the data
from sensor and send them back to the user.

Figure 1.9: The input process

Ruchi Agarwal

w
w

w
.i

g
n

it
e

d
.i
n

6

 Framework for Web Based Operating Systems

Figure 1.10: Input activity diagram

1.4.1.3 OUTPUT

The output process, as illustrated in Figures 4.11 and
4.12, is defined as writing data to an actuator. In this
use case, the user first selects the output channels
and sets the output values, and then sends an output
request to the actuator object, which will write the
output data to the actuator.

Figure 1.11 and 1.12 : Output process diagrams

1.4.1.4 QUERY

The querying process, as shown in Figures 1.13 and
1.14, is defined as querying historical data from the
database. In this use case, the user will first select
information to be searched, and then the request is
sent to the DB server object. The DB object will access
the database, find the requested data, and send them
back to the user.

Figure 1.13 and 1.14 : Query process diagrams

1.4.1.5 CONFIGURATION

The configuration process is defined as configuring
the working modes of the controller (control object)
and making the control loop work properly as
depicted in Figures 4.15 and 4.16. In this use case,
the user can select control algorithms, change set
point (a desired value for a controlled variable), and
switch the controller from manual to automatic mode,
and vice versa.

In automatic mode, the controller will cooperate with
the sensor, actuator, and DB objects to ensure that a
physical process is controlled successfully. The
sensor object samples the process variable (PV)
measured by the sensor and passes it to the control
object. The control object compares the PV with a
desired value or set point (SP) and produces an
output using a certain control algorithm, and sends
the output to the actuator object. The actuator object
manipulates the actuator according to the output of
the controller. These control procedures execute
continuously to maintain the physical process under
control. The DB object will store the configuration
and operation information in the database.

Ruchi Agarwal

w
w

w
.i

gn
it

e
d

.i
n

7

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

Figure 1.15 : Configuration process use case
diagrams

Figure 1.16 : Configuration process flow diagrams

1.4.2 CONTROL ALGORITHMS

There are many existing control algorithms that can be
adopted and implemented in the controller (control
object) of WBDCS. In the following subsections, we
will introduce two of the most popular control
algorithms.

1.4.2.1 PID CONTROL

PID (Proportional + Integral + Derivative) is a well-
established control algorithm, which is commonly used
in process industry. A single-input and single output
feedback control system consists of a sensor, a
controller, an actuator and a process as illustrated in
Figure 1.19. The goal of this loop is to maintain the
level in the tank at certain value. SP is a
predetermined value for the level. PV is the actual
level measured by the sensor. Again, the control loop
is to maintain PV at a predetermined SP.

ON-OFF CONTROL

The most rudimentary form of regulatory control is on-
off control [7]. An example of on-off control is a home

heating system. Wherever the temperature goes
above the set point, the heating system shuts off, and
the temperature drops below the set point, the heat
system turns on. This control algorithm is shown by
Equation).

m(t) = 0 % if PV>SP

m(t) = 100 % if PV< SP

The controller output is equal to 0% whenever PV
exceeds SP. The controller output is 100% whenever
PV is below SP. The ideal dynamic response of the
on-off control loop is depicted. For simplicity,
hysteresis is not considered in the example.

There are different control algorithms for different
physical environments. WBOS allows the
implementation of different control algorithms in the
control object, i.e., the system allows different
controller to be implemented.

VIRTUAL DEVICES

Virtual devices in WBOS refer to any simulated
process devices depicted on a web page. Those
devices are made up of an imitated process on a
HTML page, and are the miniature of actual devices.
Virtual devices are clickable when the user needs to
know more about them and to operate them.

Figure 1.17 illustrates the idea of virtual devices as
proposed in WBDCS. It is one of the GUIs (clients)
for a level control loop. All devices on the page may
be linked to other pages to retrieve detailed
information related to these devices. The table on the
page is an applet that displays the real-time
operational data of the actual control loop. If a real
process is under control, the PV will always track the
change of SP and keep steady state offset within an
acceptable limit. Otherwise, the process will be out of
control. In this case, PV may increase until it reaches
its highest limit, a high alarm will be sounded, and a
status icon in the table will turn red. In such a case,
an operator may click the controller and switch the
controller from automatic mode to manual mode,
open the valve to 100%, and force the level to go
down.

Ruchi Agarwal

w
w

w
.i

g
n

it
e

d
.i
n

8

 Framework for Web Based Operating Systems

Figure 1.17: Virtualization process in WBOS

REFERENCES

[1] M. Janke, “OPC-simple software integration
for legacy systems”, IEEE Industry Applications
Society Advanced Process Control Applications for
Industry Workshop, 1999.

[2] Weonjoon Kang; Hyoungyuk Kim; Hong
Seong Park, “Design and performance analysis of
middleware-based distributed control systems”,
Proceedings of 2001 8th IEEE International
Conference on Emerging Technologies and Factory
Automation, Volume: 2, 2001.

[3] D.I. Katcher, H. Arakawa and J.K. Strosnider,
“Engineering and Analysis of Fixed Priority
Schedulers,” IEEE Transactions on Software
Engineering, 19(9), September, 1993.

[4] J. Lehoczky, L. Sha, and Y. Ding, “The rate
monotonic scheduling algorithm: exact
characterization and average case behaviour,”
Proceedings of 10th IEEE Real-Time Systems
Symposium, Santa Monica, CA, December 1989.

[5] Scott M. Lewandowski, “Frameworks for
Component-Based Client/Server Computing”, ACM
Computing Surveys, Vol.30, No.1, March 1998.

[6] R. Lewis, “Design of distributed control
systems in the next millennium”, Computing & Control
Engineering Journal, Volume: 8 Issue: 4, August 1997.

[7] C.L. Liu, and J. W. Layland, “Scheduling
algorithms for multiprogramming in a hard real time
environment,” Journal of the Association for
Computing Machinery, v.20, n.1, pp. 44-61, January
1973.

[8] Yih Ping Luh, Shean-Shyong Chiou, Jau-Woie
Chang, “Design of distributed control system software

using client-server architecture”, Proceedings of The
IEEE International Conference on Industrial
Technology, 1996.

[9] P. Marti, J.M. Fuertes, G. Fohler, “An
integrated approach to real-time distributed control
systems over fieldbuses”, Proceedings of 2001 8th
IEEE International Conference on Emerging
Technologies and Factory Automation, Volume: 1,
2001.

[10] J.M. Nogiec, E. Desavouret, D. Orris, J.
Pachnik, S. Sharonov, J.C. Tompkins, K. Trombly-
Freytag, “A distributed monitoring and control system”,
Proceedings of the 1997 Particle Accelerator
Conference, Volume: 3, 1998.

[11] Object Management Group, Specification of
the Portable Object Adapter (POA), OMG Document
orbos/97-05-15 ed., June 1997.

[12] Object Management Group, The Common
Object Request Broker: Architecture and
Specification, 2.2 ed., Feb. 1998.

[13] Object Management Group, Realtime
CORBA, OMG TC Document orbos/98-10-05.

[14]
 http://www.opcfoundation.org/default.asp[Sel
ic99] B. Selic, “Turning Clockwise: Using UML in the
Real-Time Domain”, communication of the ACM,
Vol.42, No.10, October 1999.

[15] L. Sha and J. B. Goodenough, "Real-Time
Scheduling Theory and Ada," IEEE Computer, April
1990.

[16] L.H. Stolen, “Distributed Control System”,
INTELEC '99., The 21

st
 International

Telecommunication Energy Conference, 1999.

[17] William Y. Svrcek, Donald P. Mahoney,
Brent R. Young, “A Real-Time Approach to Process
Control”, John Wiley & Sons Ltd., ISBN: 0-471-
80363-5, 2000.

[18] Kok Kiong Tan, Tong Heng Lee, Chai Yee
Soh, “Remotely operated experiment for
mechatronics: monitoring of DCS on the Internet”,
Proceedings. 2001 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics,
Volume: 2, 2001.

[19] Kok Kiong Tan, Tong Heng Lee, Chai Yee
Soh, “Internet-based monitoring of distributed control
systems-An undergraduate experiment”, IEEE
Transactions on Education, Volume: 45 Issue: 2,
May 2002.

Ruchi Agarwal

w
w

w
.i

gn
it

e
d

.i
n

9

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

[20] Stephen A. Thomas, “SSL and TLS
Essentials”, John Wiley & Sons Inc., ISBN: 0-471-
38354-6, 2000.

[21] Jeffrey J.P. Tsai, Yaodong Bi, Steve J.H.
Yang, Ross A.W. Smith, “Distributed real-time
systems: monitoring, visualization, debugging, and
analysis”, John Wiley & Sons Inc., ISBN: 0471160075,
1996.

[22] Steve Vinoski “CORBA: Integrating Diverse
Applications within Distributed Heterogeneous
Environments”, IEEE Communications 14, 2, February
1997.

[23] Yirong Yang, Shanan Zhu, “Small smart
distributed control system”, Proceedings of the 4th
World Congress on Intelligent Control and Automation,
Volume: 3, 2002.

