
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REVIEW ARTICLE 
 

 
 
 

Study of Political Representations: Diplomatic 
Missions of Early Indian to Britain 

Journal of 
Advances and 

Scholarly 

Researches in 
Allied Education 

Vol. 3, Issue 6, 
April-2012, 

ISSN 2230-7540 

 

 

 

 

Journal of Advances in 
Science and Technology                     

Vol. IV, No. VII, November-
2012, ISSN 2230-9659 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE 
 

 
 
 

MATHEMATICAL CONCEPTS AND 
SOCIETIES OF AGENTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

www.ignited.in 

 



 

 

Jyoti Kaushik 

 

w
w

w
.i

gn
it

e
d

.i
n

 

1 

 

 Journal of Advances in Science and Technology                     
Vol. IV, No. VII, November-2012, ISSN 2230-9659 
 
Mathematical Concepts and Societies of Agents 

 

Jyoti Kaushik 

Research Scholar, CMJ University, Shillong, Meghalaya 

---------------------------♦----------------------------- 
 

INTRODUCTION  

Historians and Sociologists such as Latour (1987) 
have critiqued the traditional scientific method and 
emphasized that science can only be understood 
through its practice. Feminist critics such as Gilligan 
(1986) and Belenky et al (1986) have criticized 
rationalism from a psychological perspective. They 
show how the formal knowledge of rationalist 
procedures has created a “separate knowing” which 
has alienated many and women in particular. They 
propose a revaluing of personal knowledge and what 
they call “connected knowing” - a knowing in which the 
knower is an intimate part of the known. 

In his book “The Society of Mind”, Marvin Minsky 
(1989) describes the workings of the human mind in a 
radically decentered way. We are, says Minsky, a 
collection of thousands of distributed “agents”, each by 
itself stupid, specialized, able to communicate only a 
very small part of what it knows to any other agent. 

One example which Minsky and Papert analyze 
through the society of mind theory is the water volume 
experiment of Piaget (1954). In this classic experiment, 
a child is shown two full water glasses, one taller and 
one wider glass. He/she is then asked which glass has 
more water. Children before a certain stage (usually 
around age 7) say that the tall glass has more. If the 
tall glass is then poured into another wider glass and 
fills it, then if the children are asked which of the two 
full glasses has more, they say the two glasses have 
the same amount of water. But then if the water is 
poured back into the tall glass, they again assert that 
the tall glass contains more water. 

This phenomenon is robust and has resisted all 
attempts to explain it away as merely a semantic 
artifact. Piaget explains the children’s behavior as a 
construction of the concept of liquid volume. Before 
roughly age 7, children do not conserve volume, 
liquids can become more or less if their appearance is 
altered. 

Minsky and Papert’s analysis of this situation posits 
the existence of an MORE Agency (a system or 
society of agents)  and three sub-agents:  

TALLER: This agent asserts which of two glasses is 
taller. 

WIDER:  This agent asserts which of two glasses is 
wider. 

HISTORY: This agent asserts that two glasses have 
the same amount of liquid if nothing has been added 
or removed. 

In the pre-conservational state, a child’s MORE 
agency can be thought of as connected as follows: 

MORE TALLER WIDER HISTORY 

If TALLER asserts itself, then the MORE agency 
listens to it. If TALLER is quiet, then MORE listens to 
WIDER. If WIDER is also silent, then MORE listens to 
HISTORY. Thus, the child’s agents are arranged in a 
linear order. If one glass is taller than the other, 
MORE will assert that that glass has more liquid. 

But post-conservation, say Minsky and Papert, the 
child’s agents are connected differently. An 
APPEARANCE agent is created that subsumes 
TALLER and WIDER. 

The APPEARANCE agent functions as a middle 
manager between MORE and TALLER/WIDER. 

In this new organization, MORE listens to 
APPEARANCE first. But APPEARANCE listens to 
both TALLER and WIDER. If only one of these 
asserts itself or if they agree, then APPEARANCE 
speaks up about which glass has more. However, if 
the two agents TALLER and WIDER disagree,  then 
the “principle of non-compromise” is invoked and 
APPEARANCE is silent. MORE, then, listens to 
HISTORY in making its decision. 

MORE APPEARANCE HISTORY TALLER 
WIDER 

Minsky summarizes the lessons of this example as 
Papert’s principle: 

“Some of the most crucial steps in mental growth are 
based not simply on acquiring new skills, but on 
acquiring new administrative ways to use what one 
already knows.” 

An important corollary of Papert’s principle is that, 
when new skills are developed,  it doesn’t follow that 
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old habits,  intuitions,  agents are dispelled. They may 
still resurface in other contexts. But their connections 
in a particular agency will have been greatly altered. 

While it happened here that the few agents in this 
example are organized hierarchically, this can be 
expected to be true in only the simplest cases.  Nor is 
it generally true that all agencies have a clear 
“execution model”. In the general case, agencies 
interpenetrate, call each other’s' sub-agents and 
super-agents and form a tangle of connections. As 
Minsky says: 

“In its evolutionary course of making available so many 
potential connections, the human brain has actually 
gone so far that the major portion of its substance is 
no longer in its agencies but constitutes the enormous 
bundle of nerve fibers that potentially connect those 
agencies. The brain of Homo Sapiens is mainly 
composed of cabling.” 

One way then to measure the strength of an agent or 
agency is to see how well connected it is. We can then 
recharacterize our definition of concrete in agent 
language: an agent is more or less concrete 
depending on the number of agents to which it 
connects. 

The water volume experiment also illustrates the value 
of agent conflict as an impetus to learning. It was the 
conflict between the TALLER and the WIDER agents 
that led to the silence of the APPEARANCE agent and 
the subsequent attention to 

HISTORY. In order for this conflict to be detected, 
TALLER and WIDER had to both be relatively strong. 
If TALLER continued to dominate WIDER as it did in 
the first figure then the appearance of APPEARANCE 
would do no good. Thus, it was the conflict between 
two strong trusted agents that motivated the reordering 
and enrichment of the child’s MORE agency. 

In the course of this thesis, we shall draw a strong 
analogy between intellectual development in adults 
and conservation experiments of Piaget. The child 
moves from agent dominance to agent conflict to a 
new agent network. This process takes a long time, 
but results in a new set of intuitions about volume. We 
take this as a model for adult development as well. 

The usefulness of agent conflict in this example 
suggests that paradox is generally a powerful 
motivator toward new understanding. In a paradox, 
two trusted and reliable arguments (or agents) that 
have done their jobs faithfully before with good results 
are seen to be in conflict. 

PARADOX 

Throughout history, it has often been the case that 
paradoxes have led to major reconstructions of 
mathematical and scientific systems. This should no 
longer surprise us since much of what is paradoxical 

about paradoxes is their counterintuitiveness. But it is 
precisely through encountering paradox that intuitions 
are built. When two trusted agents conflict, we are ripe 
for new agent links and middle managers which 
embody new intuitions. Paradox has played this role in 
the history of science, as Anatol Rapoport (1967) 
notes: 

Paradoxes have played a dramatic role in intellectual 
history, often foreshadowing revolutionary 
developments in science, mathematics and logic. 

Whenever, in any discipline, we discover a problem 
that cannot be solved within the conceptual framework 
that supposedly should apply, we experience shock.  

The shock may compel us to discard the old 
framework and adopt a new one. It is to this process of 
intellectual molting that we owe the birth of many of 
the ideas in mathematics and science....Zeno’s 
paradox of Achilles and the tortoise gave birth to the 
idea of convergent infinite series. Antinomies 
(internal contradictions in mathematical logic) 
eventually blossomed into Gödel’s theorem. The 
paradoxical result of the Michelson-Morley 
experiment on the speed of light set the stage for the 
theory of relativity. The discovery of the wave-
particle duality of light forced a reexamination of 
deterministic causality, the very foundation of 
scientific philosophy, and led to quantum mechanics. 
The paradox of Maxwell’s demon which Leo Szilard 
first found a way to resolve in 1929, gave impetus 
more recently to the profound insight that the 
seemingly disparate concepts of information and 
entropy are intimately linked to each other.  

Rapoport’s examples are among the most salient, 
but many more mundane examples are to be found 
in the history of mathematics and science. Questions 
such as the ones below were hotly debated 
paradoxes and perplexed mathematicians in their 
times. 

• What is the result of subtracting a larger number 
from a smaller? 

• What is the result of dividing a positive number by a 
negative number? 

• What is the square root of a negative number? 

• Which are there more of: integers or even integers? 

•  How can a finite area have infinite perimeter? 

• How can an quantity be infinitely small, yet larger 
than zero? 

But parallel to their phylogenetic importance, the 
analogy of paradox to agent conflict lets us see their 
important role in ontogenetic development. It is 
through the resolution of these conflicts that new 
meanings and epistemologies are negotiated. But to 



 

 

Jyoti Kaushik 

 

w
w

w
.i

gn
it

e
d

.i
n

 

3 

 

 Journal of Advances in Science and Technology                     
Vol. IV, No. VII, November-2012, ISSN 2230-9659 
 

be of value in development, both agents in a paradox 
must be strong and trustable. If one is much more 
trustable than the other then, like TALLER, it will 
dominate and no paradox will even be perceived. If 
both agents are weak, then the paradox is not 
compelling and only serves to undermine further the 
credibility of each agent. 

In order to foster development then, we need to 
strengthen each of the conflicting agents. If, as is so 
often done in mathematics classes, we resolve the 
conflict prematurely by declaring one agent a victor, as 
being the “right answer”,  the “right way to do it”, or the 
“right definition”, then we undermine the processes 
that work to concretize these agents, linking them in to 
the network of agents. Unless we experience the 
conflict, see which way we might have gone if we 
hadn’t gone the “right” way, then we will get lost on the 
next trip. 

The result of only getting the “right answers” is brittle 
formal understanding. We shall see in the probability 
interviews in Chapter VIII  examples of all of the above 
responses to paradox. 

CONCEPTS ARE MESSY 

Mathematicians have argued that proofs are the 
essence of their enterprise. What distinguishes 
Mathematics from other disciplines is the certainty that 
is obtained through the rigor of proofs. But in fact 
proofs are not the source of mathematical certainty. 
They are a technique used by mathematicians to 
create a uniform procedure for verification of 
mathematical knowledge. The technique consists of 
“linearizing” the complex structure that constitutes the 
ideas in a mathematical argument. By means of this 
linearization, mathematical proofs can be checked line 
by line, each line either an axiom or derived from 
previous lines by accepted rules of inference. 

But the hegemony of the standard style of 
communicating mathematics (definition/theorem/proof) 
constitutes a failure to come to terms with the mind of 
the learner. We attempt to teach formal logical 
structures in isolation from the experiences that can 
connect those structures to familiar ideas.  The result 
is that the idea too often remains “abstract” in the mind 
of the student, disconnected, alien, and separate, a 
pariah in the society of agents. 

Even if the motivation is there to communicate our 
mathematical ideas to those who don't already 
understand them, we may have lost the organization of 
mental agents that existed before the idea was 
acquired, and forgotten the mechanisms by which we 
ourselves acquired the ideas. This is clearly illustrated 
by the conservation experiments of Piaget (1952). In a 
typical such experiment, a child is shown a tall thin 
glass filled with water which is then poured into a 

shorter wider glass. When asked which glass contains 
more water, so-called “pre-conservation” children say 
that the tall glass has more. A year or so later, these 
same children now “conservational” are shown video 
tapes of their earlier interviews on the subject. These 
children do not believe that they could ever have made 
such a “ridiculous” claim. “Of course the glasses 
contain the same amount of water- the videotapes 
must have been faked.” (Papert, 1990).  Piaget's 
experiments are dramatic examples of what is a quite 
common phenomenon -- people have a hard time 
remembering what it was like to not understand a 
concept which they now understand. 

What is it like to not accept the identity of objects 
through time? What is it like to not understand what 
addition is? Because of this phenomenon, a well-
meaning mathematical educator often cannot 
reconstruct the process by which he/she was 
convinced of the efficacy of a definition or the validity 
of a proof and mistakenly believes that the linear 
proof contains all the information and structure 
necessary for the conceptual understanding. 

If asked to justify the formal style of their 
expostulation, an author or teacher of mathematics 
may respond that the linear structures 
(definition/theorem/proof) capture most economically 
the essence of the material.  But it may be that this 
reason for hiding the messy structure of mathematical 
ideas is not the whole story. Revealing that the 
structure of mathematics in your head does not mirror 
the clean elegant lines of the mathematical text can 
be quite embarrassing. Yet to reveal that process 
may be perceived as an admission of vulnerability 
and weakness.  The theorem and proof is the logical 
mental construct of which we are proud; the web of 
connections, intuitions, partial understandings, and 
mistakes from which that logical construct arose may 
be a source of shame.  The traditional form of 
mathematical expostulation is a shield that 
mathematical culture has developed  to protect the 
mathematical teacher or author from embarrassment. 

It allows the mathematician to present a controlled 
and logically inexorable understanding without 
exposing him to the risk of revealing his own messy 
internal thought processes. 

COVERING UP IS DAMAGING 

This covering up of the hidden messy structure of 
mathematical ideas can be damaging to the 
mathematical learner. If learners believe that the 
mathematics as presented is a true picture of the way 
the mathematics is actually discovered and 
understood, they can be quite discouraged. Why is 
their thinking so messy when others' is so clean and 
elegant?  They conclude that clearly mathematics 
must be made only for those born to it and not 



 

 

Jyoti Kaushik 

w
w

w
.i

g
n

it
e

d
.i
n

 

4 

 

 Mathematical Concepts and Societies of Agents 

available to mere mortals. Mathematical discourse is 
not a form of persuasion continuous with daily 
discourse, but  is instead in some special province all 
its own, a purely formal phenomenon. These 
mathematical learners are deprived of the experience 
of struggling for a good definition, and the knowledge 
that mathematical truths are arrived at by a process of 
successive refinement not in a linear and logically 
inexorable fashion. (see Lakatos, 1976) 

Unfortunately, this kind of mathematical culture is self-
reinforcing.  Those who survive the stark, formal 
modes of presentation and manage to concretize 
mathematical structures sufficiently to pursue a career 
in mathematics have learned along the way that to 
reveal their internal thought processes is to violate a 
powerful social norm.  In parallel to the standard 
mathematical curriculum, the student has learned the 
following “lessons” of mathematical culture: 

• No one is interested in your personal constructions of 
mathematical ideas. 

• There is one canonical way of understanding 
mathematical objects. 

• The correct procedure for understanding 
mathematical ideas is to replace your former 
unrigorous intuitions with the received rigorous 
definitions. 

• Mathematics is to be grasped instantaneously - 
struggle with an idea is a sign of dullness and lack of 
ability. 

The student in a mathematics classroom who braves a 
revelation of his/her tentative understanding of an idea 
is too often confronted with a demeaning response, 
“How can you not see the answer to that? -- it’s trivial.” 

Not only does this culture impede learning, it is almost 
certainly an inhibition to new mathematical discovery. 
In fact, embarrassment at expressing new, half-
formulated ideas is a powerful force for conservatism 
in mathematics. It is difficult to challenge old ideas, or 
to formulate new ones, in the absence of a culture that 
supports the floundering, messy process of 
mathematical exploration. 
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