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Abstract - In an undirected graph G, two vertices u and v are called connected if G contains 

a path from u to v. Otherwise, they are called disconnected. A graph is called connected if every pair of 

distinct vertices in the graph is connected; otherwise, it is called disconnected. 

A graph is called k-vertex-connected or k-edge-connected if no set of k-1 vertices (respectively, edges) 

exists that, when removed, disconnects the graph. A k-vertex-connected graph is often called simply k-

connected. 

A directed graph is called weakly connected if replacing all of its directed edges with undirected edges 

produces a connected (undirected) graph. It is strongly connected or strong if it contains a directed path 

from u to v and a directed path from v to u for every pair of vertices u, v. 

Key words: connected, disconnected, weakly connected, strongly connected. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

Typically, a graph is depicted in diagrammatic form as a 
set of dots for the vertices, joined by lines or curves for 
the edges. Graphs are one of the objects of study 
in discrete mathematics. 

The edges may be directed or undirected. For example, 
if the vertices represent people at a party, and there is 
an edge between two people if they shake hands, then 
this is an undirected graph, because if person A shook 
hands with person B, then person B also shook hands 
with person A. In contrast, if the vertices represent 
people at a party, and there is an edge from person A 
to person B when person A knows of person B, then 
this graph is directed, because knowledge of someone 
is not necessarily asymmetric relation (that is, one 
person knowing another person does not necessarily 
imply the reverse; for example, many fans may know of 
a celebrity, but the celebrity is unlikely to know of all 
their fans). This latter type of graph is called 
a directed graph and the edges are called directed 
edges or arcs. 

Vertices are also called nodes or points, and edges are 
also called lines or arcs. Graphs are the basic subject 
studied by graph theory. The word "graph" was first 
used in this sense by J.J. Sylvester in 1878.

[2]
 

REVIEW OF LITERATURE  

Much research in graph theorywas motivated by 
attempts to prove that all maps, like this one, could 
becolored with only four colors.Kenneth 
Appel and Wolfgang Hakenfinally proved this in 
1976.[5] 

The history of discrete mathematics has involved a 
number of challenging problems which have focused 
attention within areas of the field. In graph theory, 
much research was motivated by attempts to prove 
the four color theorem, first stated in 1852, but not 
proved until 1976 (by Kenneth Appel and Wolfgang 
Haken, using substantial computer assistance).

[5]
 

In logic, the second problem on David Hilbert's list of 
open problems presented in 1900 was to prove that 
the axioms of arithmetic are consistent. Gödel's 
second incompleteness theorem, proved in 1931, 
showed that this was not possible – at least not within 
arithmetic itself. Hilbert's tenth problem was to 
determine whether a given polynomial Diophantine 
equation with integer coefficients has an integer 
solution. In 1970, Yuri Matiyasevich proved that 
this could not be done. 

The need to break German codes in World War II led 
to advances in cryptography and theoretical computer 
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science, with the first programmable digital electronic 
computer being developed at England's Bletchley Park. 
At the same time, military requirements motivated 
advances inoperations research. The Cold War meant 
that cryptography remained important, with fundamental 
advances such as public-key cryptography being 
developed in the following decades. Operations 
research remained important as a tool in business and 
project management, with the critical path 
method being developed in the 1950s. 

MATERIAL AND METHOD  

Two edges of a graph are 
called adjacent (sometimes coincident) if they share a 
common vertex. Two arrows of a directed graph are 
called consecutive if the head of the first one is at the 
nock (notch end) of the second one. Similarly, two 
vertices are called adjacentif they share a common 
edge (consecutive if they are at the notch and at the 
head of an arrow), in which case the common edge is 
said to join the two vertices. An edge and a vertex on 
that edge are called incident. 

The graph with only one vertex and no edges is called 
the trivial graph. A graph with only vertices and no 
edges is known as anedgeless graph. The graph with 
no vertices and no edges is sometimes called the null 
graph or empty graph, but the terminology is not 
consistent and not all mathematicians allow this object. 

In a weighted graph or digraph, each edge is 
associated with some value, variously called 
its cost, weight, length or other term depending on the 
application; such graphs arise in many contexts, for 
example in optimal routing problems such as 
the traveling salesman problem. 

Normally, the vertices of a graph, by their nature as 
elements of a set, are distinguishable. This kind of 
graph may be called vertex-labeled. However, for 
many questions it is better to treat vertices as 
indistinguishable; then the graph may be 
called unlabeled. (Of course, the vertices may be still 
distinguishable by the properties of the graph itself, 
e.g., by the numbers of incident edges). The same 
remarks apply to edges, so graphs with labeled edges 
are called edge-labeled graphs. Graphs with labels 
attached to edges or vertices are more generally 
designated as labeled. Consequently, graphs in which 
vertices are indistinguishable and edges are 
indistinguishable are called unlabeled. (Note that in the 
literature the term labeled may apply to other kinds of 
labeling, besides that which serves only to distinguish 
different vertices or edges.) 

Examples 

 

A graph with six nodes. 

 The diagram at right is a graphic 
representation of the following graph: 

V = {1, 2, 3, 4, 5, 6} 

E = {{1, 2}, {1, 5}, {2, 3}, {2, 5}, {3, 4}, {4, 5}, {4, 6}}. 

 In category theory a small category can be 
represented by a directed multigraph in which the 
objects of the category represented as vertices and 
the morphisms as directed edges. Then, 
the functors between categories induce some, but not 
necessarily all, of the digraph morphisms of the 
graph. 

 In computer science, directed graphs are 
used to represent knowledge (e.g., Conceptual 
graph), finite state machines, and many other discrete 
structures. 

 A binary relation R on a set X defines a 
directed graph. An element x of X is a direct 
predecessor of an element y of X iff xRy. 

Important graphs 

CONCLUSION 

 In a complete graph, each pair of vertices is 
joined by an edge; that is, the graph contains all 
possible edges. 

 In a bipartite graph, the vertex set can 
be partitioned into two sets, W and X, so that no two 
vertices in W are adjacent and no two vertices 
in X are adjacent. Alternatively, it is a graph with 
a chromatic number of 2. 

 In a complete bipartite graph, the vertex set 
is the union of two disjoint sets, W and X, so that 
every vertex in W is adjacent to every vertex in X but 
there are no edges within W or X. 

 In a linear graph or path graph of length n, 
the vertices can be listed in order, v0, v1, ..., vn, so that 
the edges are vi−1vi for each i = 1, 2, ..., n. If a linear 
graph occurs as a subgraph of another graph, it is 
a path in that graph. 
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 In a cycle graph of length n ≥ 3, vertices can 
be named v1, ..., vn so that the edges are vi−1vi for 
each i = 2,...,n in addition to vnv1. Cycle graphs can be 
characterized as connected 2-regular graphs. If a cycle 
graph occurs as a subgraph of another graph, it is 
acycle or circuit in that graph. 

 A planar graph is a graph whose vertices and 
edges can be drawn in a plane such that no two of the 
edges intersect (i.e.,embedded in a plane). 

 A tree is a connected graph with no cycles. 

 A forest is a graph with no cycles (i.e. the 
disjoint union of one or more trees). 
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