

REVIEW ARTICLE

Study of Political Representations: Diplomatic
Missions of Early Indian to Britain

Journal of
Advances and

Scholarly
Researches in

Allied
Education

Vol. 3, Issue 6,
April-2012,

ISSN 2230-7540

Journal of Advances in
Science and Technology

Vol. IV, No. VII, November-
2012, ISSN 2230-9659

EVALUATION OF MAP REDUCE (MR) AND
PARALLEL SQL DATABASE

MANAGEMENT SYSTEMS (DBMS) FOR
PERFORMANCE AND DEVELOPMENT

COMPLEXITY

www.ignited.in

Surbhi Agarwal

w
w

w
.i

gn
it

e
d

.i
n

1

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

Evaluation of Map Reduce (MR) and Parallel SQL
Database Management Systems (DBMS) For
Performance and Development Complexity

Surbhi Agarwal

Research Scholar, CMJ University, Shillong, Meghalaya, India

Abstract: There is currently considerable enthusiasm around the MapReduce (MR) paradigm for large-

scale data analysis. Although the basic control flow of this framework has existed in parallel SQL

database management systems (DBMS) for over 20 years, some have called MR a dramatically new

computing model. In this paper, we describe and compare both paradigms. Furthermore, we evaluate

both kinds of systems in terms of performance and development complexity. To this end, we define a

benchmark consisting of a collection of tasks that we have run on an open source version of MR as well

as on two parallel DBMSs. For each task, we measure each system’s performance for various degrees of

parallelism on a cluster of 100 nodes. Our results reveal some interesting trade-offs. Although the

process to load data into and tune the execution of parallel DBMSs took much longer than the MR

system, the observed performance of these DBMSs was strikingly better. We speculate about the causes

of the dramatic performance difference and consider implementation concepts that future systems

should take from both kinds of architectures

---------------------------♦-----------------------------

1. INTRODUCTION

Recently the trade press has been filled with news of
the revolution of “cluster computing”. This paradigm
entails harnessing large numbers of (low-end)
processors working in parallel to solve a computing
problem. In effect, this suggests constructing a data
center by lining up a large number of low-end servers
instead of deploying a smaller set of high-end servers.
With this rise of interest in clusters has come a
proliferation of tools for programming them. One of the
earliest and best known such tools in MapReduce
(MR) [8]. MapReduce is attractive because it provides
a simple model through which users can express
relatively sophisticated distributed programs, leading
to significant interest in the educational community.
For example, IBM and Google have announced plans
to make a 1000 processor MapReduce cluster
available to teach students distributed programming.

Given this interest in MapReduce, it is natural to ask
“Why not use a parallel DBMS instead?” Parallel
database systems (which all share a common
architectural design) have been commercially available
for nearly two decades, and there are now about a
dozen in the marketplace, including Teradata, Aster
Data, Netezza, DATAllegro (and therefore soon
Microsoft SQL Server via Project Madison), Dataupia,
Vertica, ParAccel, Neoview, Greenplum, DB2 (via the
Database Partitioning Feature), and Oracle (via
Exadata). They are robust, high performance

computing platforms. Like MapReduce, they provide
a high-level programming environment and parallelize
readily. Though it may seem thatMR and parallel
databases target different audiences, it is in fact
possible to write almost any parallel processing task
as either a set of database queries (possibly using
user defined functions and aggregates to filter and
combine data) or a set ofMapReduce jobs. Inspired
by this question, our goal is to understand the
differences between the MapReduce approach to
performing large-scale data analysis and the
approach taken by parallel database systems. The
two classes of systems make different choices in
several key areas. For example, all DBMSs require
that data conform to a well-defined schema, whereas
MR permits data to be in any arbitrary format. Other
differences also include how each system provides
indexing and compression optimizations,
programming models, the way in which data is
distributed, and query execution strategies.

The purpose of this paper is to consider these
choices, and the trade-offs that they entail. We begin
in Section 2 with a brief review of the two alternative
classes of systems, followed by a discussion in
Section 3 of the architectural trade-offs. Then, in
Section 4 we present our benchmark consisting of a
variety of tasks, one taken from the MR paper [8],
and the rest a collection of more demanding tasks. In
addition, we present the results of running the
benchmark on a 100-node cluster to execute each

Surbhi Agarwal

w
w

w
.i

g
n

it
e

d
.i
n

2

 Evaluation of Map Reduce (MR) and Parallel SQL Database Management Systems (DBMS) For
Performance and Development Complexity

task. We tested the publicly available open-source
version of MapReduce, Hadoop [1], against two
parallel SQL DBMSs, Vertica [3] and a second system
from a major relational vendor. We also present results
on the time each system took to load the test data and
report informally on the procedures needed to set up
and tune the software for each task.

In general, the SQL DBMSs were significantly faster
and required less code to implement each task, but
took longer to tune and load the data. Hence, we
conclude with a discussion on the reasons for the
differences between the approaches and provide
suggestions on the best practices for any large-scale
data analysis engine.

Some readers may feel that experiments conducted
using 100 nodes are not interesting or representative
of real world data processing systems. We disagree
with this conjecture on two points. First, as we
demonstrate in Section 4, at 100 nodes the two
parallel DBMSs range from a factor of 3.1 to 6.5 faster
than MapReduce on a variety of analytic tasks. While
MR may indeed be capable of scaling up to 1000s of
nodes, the superior efficiency of modern DBMSs
alleviates the need to use such massive hardware on
datasets in the range of 1–2PB (1000 nodes with 2TB
of disk/node has a total disk capacity of 2PB). For
example, eBay’s Teradata configuration uses just 72
nodes (two quad-core CPUs, 32GB RAM, 104 300GB
disks per node) to manage approximately 2.4PB of
relational data. As another example, Fox Interactive
Media’s warehouse is implemented using a 40-node
Greenplum DBMS. Each node is a Sun X4500
machine with two dual-core CPUs, 48 500GB disks,
and 16 GB RAM (1PB total disk space) [7]. Since few
data sets in the world even approach a petabyte in
size, it is not at all clear how many MR users really
need 1,000 nodes.

2. TWO APPROACHES TO LARGE SCALE
DATA ANALYSIS

The two classes of systems we consider in this paper
run on a “shared nothing” collection of computers [19].
That is, the system is deployed on a collection of
independent machines, each with local disk and local
main memory, connected together on a highspeed
local area network. Both systems achieve parallelism
by dividing any data set to be utilized into partitions,
which are allocated to different nodes to facilitate
parallel processing. In this section, we provide an
overview of how both the MR model and traditional
parallel DBMSs operate in this environment.

2.1 Map Reduce

One of the attractive qualities about the MapReduce
programming model is its simplicity: an MR program
consists only of two functions, called Map and Reduce,
that are written by a user to process key/value data
pairs. The input data set is stored in a collection of
partitions in a distributed file system deployed on each

node in the cluster. The program is then injected into a
distributed processing framework and executed in a
manner to be described.

The Map function reads a set of “records” from an
input file, does any desired filtering and/or
transformations, and then outputs a set of intermediate
records in the form of new key/value pairs. As the Map
function produces these output records, a “split”
function partitions the records into R disjoint buckets
by applying a function to the key of each output record.
This split function is typically a hash function, though
any deterministic function will suffice. Each map
bucket is written to the processing node’s local disk.
The Map function terminates having produced R
output files, one for each bucket. In general, there are
multiple instances of the Map function running on
different nodes of a compute cluster. We use the term
instance to mean a unique running invocation of
either the Map or Reduce function. Each Map
instance is assigned a distinct portion of the input file
by the MR scheduler to process. If there are M such
distinct portions of the input file, then there are R
files on disk storage for each of the M Map tasks, for

a total of M × R files;
The key observation is that all Map instances use the
same hash function; thus, all output records with the
same hash value are stored in the same output file.

The second phase of a MR program executes R
instances of the Reduce program, where R is
typically the number of nodes. The input for each
Reduce instance Rj consists of the files

 These files are transferred over the
network from the Map nodes’ local disks. Note that
again all output records from the Map phase with the
same hash value are consumed by the same
Reduce instance, regardless of whichMap instance
produced the data. Each Reduce processes or
combines the records assigned to it in some way,
and then writes records to an output file (in the
distributed file system), which forms part of the
computation’s final output.

2.2 Parallel DBMSs

Database systems capable of running on clusters of
shared nothing nodes have existed since the late
1980s. These systems all support standard relational
tables and SQL, and thus the fact that the data is
stored on multiple machines is transparent to the
end-user.

Many of these systems build on the pioneering
research from the Gamma [10] and Grace [11]
parallel DBMS projects. The two key aspects that
enable parallel execution are that (1) most (or even
all) tables are partitioned over the nodes in a cluster
and that (2) the system uses an optimizer that
translates SQL commands into a query plan whose
execution is divided amongst multiple nodes.
Because programmers only need to specify their

Surbhi Agarwal

w
w

w
.i

gn
it

e
d

.i
n

3

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

goal in a high level language, they are not burdened
by the underlying storage details, such as indexing
options and join strategies.

Consider a SQL command to filter the records in a
table T1 based on a predicate, along with a join to a
second table T2 with an aggregate computed on the
result of the join. A basic sketch of how this command
is processed in a parallel DBMS consists of three
phases.

Since the database will have already stored T1 on
some collection of the nodes partitioned on some
attribute, the filter sub-query is first performed in
parallel at these sites similar to the filtering performed
in a Map function. Following this step, one of two
common parallel join algorithms are employed based
on the size of data tables.

3. ARCHITECTURAL ELEMENTS

In this section, we consider aspects of the two system
architectures that are necessary for processing large
amounts of data in a distributed environment. One
theme in our discussion is that the nature of the MR
model is well suited for development environments
with a small number of programmers and a limited
application domain. This lack of constraints, however,
may not be appropriate for longer-term and larger-
sized projects.

3.1 Schema Support

Parallel DBMSs require data to fit into the relational
paradigm of rows and columns. In contrast, the MR
model does not require that data files adhere to a
schema defined using the relational data model. That
is, the MR programmer is free to structure their data in
any manner or even to have no structure at all.

One might think that the absence of a rigid schema
automatically makes MR the preferable option. For
example, SQL is often criticized for its requirement that
the programmer must specify the “shape” of the data
in a data definition facility. On the other hand, the MR
programmer must often write a custom parser in order
to derive the appropriate semantics for their input
records, which is at least an equivalent amount of
work. But there are also other potential problems with
not using a schema for large data sets.

Whatever structure exists in MR input files must be
built into the Map and Reduce programs. Existing MR
implementations provide built-in functionality to handle
simple key/value pair formats, but the programmer
must explicitly write support for more complex data
structures, such as compound keys. This is possibly
an acceptable approach if a MR data set is not
accessed by multiple applications. If such data sharing
exists, however, a second programmer must decipher

the code written by the first programmer to decide how
to process the input file. A better approach, followed
by all SQL DBMSs, is to separate the schema from the
application and store it in a set of system catalogs that
can be queried.

But even if the schema is separated from the
application and made available to multiple MR
programs through a description facility, the developers
must also agree on a single schema. This obviously
requires some commitment to a data model or models,
and the input files must obey this commitment as it is
cumbersome to modify data attributes once the files
are created.

3.2 Indexing

All modern DBMSs use hash or B-tree indexes to
accelerate access to data. If one is looking for a
subset of records (e.g., employees with a salary
greater than $100,000), then using a proper index
reduces the scope of the search dramatically. Most
database systems also support multiple indexes per
table. Thus, the query optimizer can decide which
index to use for each query or whether to simply
perform a brute-force sequential search.

3.3 Programming Model

During the 1970s, the database research community
engaged in a contentious debate between the
relational advocates and the Codasyl advocates [18].
The salient issue of this discussion was whether a
program to access data in a DBMS should be written
either by:

1. Stating what you want – rather than presenting an
algorithm for how to get it (Relational)

2. Presenting an algorithm for data access (Codasyl)

4. DISCUSSION

We now discuss broader issues about the benchmark
results and comment on particular aspects of each
system that the raw numbers may not convey. In the
benchmark above, both DBMS-X and Vertica execute
most of the tasks much faster than Hadoop at all
scaling levels. The next subsections describe, in
greater detail than the previous section, the reasons
for this dramatic performance difference.

4.1 System-level Aspects

In this section, we describe how architectural
decisions made at the system-level affect the relative
performance of the two classes of data analysis
systems. Since installation and configuration
parameters can have a significant difference in the
ultimate performance of the system, we begin with a

Surbhi Agarwal

w
w

w
.i

g
n

it
e

d
.i
n

4

 Evaluation of Map Reduce (MR) and Parallel SQL Database Management Systems (DBMS) For
Performance and Development Complexity

discussion of the relative ease with which these
parameters are set. Afterwards, we discuss some
lower level implementation details. While some of
these details affect performance in fundamental ways
(e.g., the fact that MR does not transform data on
loading precludes various I/O optimizations and
necessitates runtime parsing which increases CPU
costs), others are more implementation specific (e.g.,
the high start-up cost of MR).

4.1.1 System Installation, Configuration, and
Tuning

We were able to get Hadoop installed and running jobs
with little effort. Installing the system only requires
setting up data directories on each node and deploying
the system library and configuration files. Configuring
the system for optimal performance was done through
trial and error. We found that certain parameters, such
as the size of the sort buffers or the number of
replicas, had no affect on execution performance,
whereas other parameters, such as using larger block
sizes, improved performance significantly.

The DBMS-X installation process was relatively
straightforward. A GUI leads the user through the
initial steps on one of the cluster nodes, and then
prepares a file that can be fed to an installer utility in
parallel on the other nodes to complete the installation.
Despite this simple process, we found that DBMS-X
was complicated to configure in order to start running
queries. Initially, we were frustrated by the failure of
anything but the most basic of operations. We
eventually discovered each node’s kernel was
configured to limit the total amount of allocated virtual
address space. When this limit was hit, new processes
could not be created and DBMS-X operations would
fail. We mention this even though it was our own
administrative error, as we were surprised that DBMS-
X’s extensive system probing and self-adjusting
configuration was not able to detect this limitation.

4.1.2 Task Start-up

We found that our MR programs took some time
before all nodes were running at full capacity. On a
cluster of 100 nodes, it takes 10 seconds from the
moment that a job is submitted to the JobTracker
before the first Map task begins to execute and 25
seconds until all the nodes in the cluster are executing
the job. This coincides with the results in [8], where the
data processing rate does not reach its peak for nearly
60 seconds on a cluster of 1800 nodes. The “cold
start” nature is symptomatic to Hadoop’s (and
apparently Google’s) implementation and not inherent
to the actual MR model itself. For example, we also
found that prior versions of Hadoop would create a
new JVM process for each Map and Reduce instance
on a node, which we found increased the overhead of
running jobs on large data sets; enabling the JVM
reuse feature in the latest version of Hadoop improved
our results for MR by 10–15%.

4.1.3 Compression

Almost every parallel DBMS (including DBMS-X and
Vertica) allows for optional compression of stored
data. It is not uncommon for compression to result in a
factor of 6–10 space savings. Vertica’s internal data
representation is highly optimized for data
compression and has an execution engine that
operates directly on compressed data (i.e., it avoids
decompressing the data during processing whenever
possible). In general, since analysis tasks on large
data sets are often I/O bound, trading CPU cycles
(needed to decompress input data) for I/O bandwidth
(compressed data means that there is less data to
read) is a good strategy and translates to faster
execution. In situations where the executor can
operate directly on compressed data, there is often no
trade-off at all and compression is an obvious win.

Hadoop and its underlying distributed filesystem
support both block-level and record-level
compression on input data. We found, however, that
neither technique improved Hadoop’s performance
and in some cases actually slowed execution. It also
required more effort on our part to either change
code or prepare the input data. It should also be
noted that compression was also not used in the
original MR benchmark [8].

4.1.4 Loading and Data Layout

Parallel DBMSs have the opportunity to reorganize
the input data file at load time. This allows for certain
optimizations, such as storing each attribute of a
table separately (as done in column-stores such as
Vertica). For read-only queries that only touch a
subset of the attributes of a table, this optimization
can improve performance by allowing the attributes
that are not accessed by a particular query to be left
on disk and never read. Similar to the compression
optimization described above, this saves critical I/O
bandwidth. MR systems by default do not transform
the data when it is loaded into their distributed file
system, and thus are unable to change the layout

of input data, which precludes this class of
optimization opportunities.

4.1.5 Execution Strategies

As noted earlier, the query planner in parallel
DBMSs are careful to transfer data between nodes
only if it is absolutely necessary. This allows the
systems to optimize the join algorithm depending on
the characteristics of the data and perform push-
oriented messaging without writing intermediate data
sets. Over time, MR advocates should study the
techniques used in parallel DBMSs and incorporate
the concepts that are germane to their model. In
doing so, we believe that again the performance of
MR frameworks will improve dramatically.

Surbhi Agarwal

w
w

w
.i

gn
it

e
d

.i
n

5

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

4.1.6 Failure Model

As discussed previously, while not providing support
for transactions, MR is able to recover from faults in
the middle of query execution in a way that most
parallel database systems cannot. Since parallel
DBMSs will be deployed on larger clusters over time,
the probability of mid-query hardware failures will
increase. Thus, for long running queries, it may be
important to implement such a fault tolerance model.
While improving the fault-tolerance of DBMSs is clearly
a good idea, we are wary of devoting huge
computational clusters and “brute force” approaches to
computation when sophisticated software would could
do the same processing with far less hardware and
consume far less energy, or in less time, thereby
obviating the need for a sophisticated fault tolerance
model. A multithousand-node cluster of the sort
Google, Microsoft, and Yahoo! run uses huge amounts
of energy, and as our results show, for many data
processing tasks a parallel DBMS can often achieve
the same performance using far fewer nodes. As such,
the desirable approach is to use high-performance
algorithms with modest parallelism rather than brute
force approaches on much larger clusters.

4.2 User-level Aspects

A data processing system’s performance is irrelevant
to a user or an organization if the system is not usable.
In this section, we discuss aspects of each system that
we encountered from a userlevel perspective while
conducting the benchmark study that may promote or
inhibit application development and adoption.

4.2.1 Ease of Use

Once the system is on-line and the data has been
loaded, the programmer then begins to write the query
or the code needed to perform their task. Like other
kinds of programming, this is often an

iterative process: the programmer writes a little bit of
code, tests it, and then writes some more. The
programmer can easily determine whether his/her
code is syntactically correct in both types of systems:
the MR framework can check whether the user’s code
compiles and the SQL engines can determine whether
the queries parse correctly. Both systems also provide
runtime support to assist users in debugging their
programs.

It is also worth considering the way in which the
programmer writes the query. MR programs in Hadoop
are primarily written in Java (though other language
bindings exist). Most programmers are more familiar
with object-oriented, imperative programming than with
other language technologies, such as SQL. That said,
SQL is taught in many undergraduate programs and is
fairly portable – we were able to share the SQL

commands between DBMS-X and Vertica with only
minor modifications.

4.2.2 Additional Tools

Hadoop comes with a rudimentary web interface that
allows the user to browse the contents of the
distributed filesystemand monitor the execution of
jobs. Any additional tools would most likely at this time
have to be developed in house.

SQL databases, on the other hand, have tons of
existing tools and applications for reporting and data
analysis. Entire software industries have developed
around providing DBMS users with third-party
extensions. The types of software that many of these
tools include (1) data visualization, (2) business
intelligence, (3) data mining, (4) data replication, and
(5) automatic database design. Because MR
technologies are still nascent, the market for such
software for MR is limited; however, as the user base
grows, many of the existing SQL-based tools will
likely support MR systems.

5. CONCLUSION

There are a number of interesting conclusions that
can be drawn from the results presented in this
paper. First, at the scale of the experiments we
conducted, both parallel database systems displayed
a significant performance advantage over Hadoop
MR in executing a variety of data intensive analysis
benchmarks. Averaged across all five tasks at 100
nodes, DBMS-X was 3.2 times faster than MR and
Vertica was 2.3 times faster than DBMS-X.While we
cannot verify this claim, we believe that the systems
would have the same relative performance on 1,000
nodes (the largest Teradata configuration is less than
100 nodes managing over four petabytes of data).
The dual of these numbers is that a parallel database
system that provides the same response time with far
fewer processors will certainly uses far less energy;
theMapReduce model on multi-thousand node
clusters is a brute force solution that wastes vast
amounts of energy. While it is rumored that the
Google version of MR is faster than the Hadoop
version, we did not have access to this code and
hence could not test it. We are doubtful again,
however, that there would be a substantial difference
in the performance of the two versions as MR is
always forced to start a query with a scan of the
entire input file.

This performance advantage that the two database
systems share is the result of a number of
technologies developed over the past 25 years,
including (1) B-tree indices to speed the execution of
selection operations, (2) novel storage mechanisms
(e.g., columnorientation), (3) aggressive compression
techniques with ability to operate directly on

Surbhi Agarwal

w
w

w
.i

g
n

it
e

d
.i
n

6

 Evaluation of Map Reduce (MR) and Parallel SQL Database Management Systems (DBMS) For
Performance and Development Complexity

compressed data, and (4) sophisticated parallel
algorithms for querying large amounts of relational
data. In the case of a column-store database like
Vertica, only those columns that are needed to
execute a query are actually read from disk.
Furthermore, the column-wise storage of data results
in better compression factors (approximately a factor
of 2.0 for Vertica, versus a factor of 1.8 for DBMS-X
and 1.25 for Hadoop); this also further reduces the
amount of disk I/O that is performed to execute a
query.

Extensibility was another area where we found the
database systems we tested lacking. Extending a
DBMS with user-defined types and functions is an idea
that is now 25 years old [16]. Neither of the parallel
systems we tested did a good job on the UDF
aggregation tasks, forcing us to find workarounds
when we encountered limitations (e.g., Vertica) and
bugs (e.g., DBMS-X).

While all DB systems are tolerant of a wide variety of
software failures, there is no question that MR does a
superior job of minimizing the amount of work that is
lost when a hardware failure occurs. This capability,
however, comes with a potentially large performance
penalty, due to the cost of materializing the
intermediate files between the map and reduce
phases. Left unanswered is how significant this
performance penalty is. Unfortunately, to investigate
this question properly requires implementing both the
materialization and no-materialization strategies in a
common framework, which is an effort beyond the
scope of this paper. Despite a clear advantage in this
domain, it is not completely clear how significant a
factor Hadoop’s ability to tolerate failures during
execution really is in practice. In addition, if a MR
system needs 1,000 nodes to match the performance
of a 100 node parallel database system, it is ten times
more likely that a node will fail while a query is
executing.

Computing this in parallel requires producing a total
order of all employees followed by a second phase in
which each node adjusts the rank values of its records
with the counts of the number of records on each node
to its “left” (i.e., those nodes with salary values that are
strictly smaller). Although aMR program could perform
this sort in parallel, it is not easy to fit this query into
the MR paradigm of group by aggregation. RANK is
just one of the many powerful analytic functions
provided by modern parallel database systems. For
example, both Teradata and Oracle support a rich set
of functions, such as functions over windows of
ordered records.

Two architectural differences are likely to remain in the
long run. MR makes a commitment to a “schema later”

or even “schema never” paradigm. But this lack of a
schema has a number of important consequences.
Foremost, it means that parsing records at run time is
inevitable, in contrast to DBMSs, which perform
parsing at load time. This difference makes
compression less valuable in MR and causes a portion
of the performance difference between the two classes
of systems. Without a schema, each user must write a
custom parser, complicating sharing data among
multiple applications. Second, a schema is needed for
maintaining information that is critical for optimizing
declarative queries, including what indices exist, how
tables are partitioned, table cardinalities, and
histograms that capture the distribution of values
within a column.

In our opinion there is a lot to learn from both kinds of
systems. Most importantly is that higher level
interfaces, such as Pig [15], Hive [2], are being put
on top of the MR foundation, and a number of tools
similar in spirit but more expressive than MR are
being developed, such as Dryad [13] and Scope [5].
This will make complex tasks easier to code in MR-
style systems and remove one of the big advantages
of SQL engines, namely that they take much less
code on the tasks in our benchmark. For parallel
databases, we believe that both commercial and
open-source systems will dramatically improve the
parallelization of user-defined functions. Hence, the
APIs of the two classes of systems are clearly
moving toward each other. Early evidence of this is
seen in the solutions for integrating SQL with MR
offered by Greenplum and Asterdata.

6. REFERENCES

[1] Hadoop. http://hadoop.apache.org/.

[2] Hive. http://hadoop.apache.org/hive/.

[3] Vertica. http://www.vertica.com/.

[4] Y. Amir and J. Stanton. The Spread Wide
Area Group Communication System. Technical
report, 1998.

[5] R. Chaiken, B. Jenkins, P.-A. Larson, B.
Ramsey, D. Shakib, S. Weaver, and J. Zhou. Scope:
easy and efficient parallel processing of massive
data sets. Proc. VLDB Endow., 1(2):1265–1276,
2008.

[6] Cisco Systems. Cisco Catalyst 3750-E
Series Switches Data Sheet, June 2008.

[7] J. Cohen, B. Dolan, M. Dunlap, J. M.
Hellerstein, and C. Welton. MAD Skills: New
Analysis Practices for Big Data. Under Submission,
March 2009.

Surbhi Agarwal

w
w

w
.i

gn
it

e
d

.i
n

7

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

[8] J. Dean and S. Ghemawat. MapReduce:
Simplified Data Processing on Large Clusters. In OSDI
’04, pages 10–10, 2004.

[9] D. J. DeWitt and R. H. Gerber. Multiprocessor
Hash-based Join Algorithms. In VLDB ’85, pages 151–
164, 1985.

[10] D. J. DeWitt, R. H. Gerber, G. Graefe, M. L.
Heytens, K. B. Kumar, and M. Muralikrishna. GAMMA
- A High Performance Dataflow Database Machine. In
VLDB ’86, pages 228–237, 1986.

[11] S. Fushimi, M. Kitsuregawa, and H. Tanaka.
An Overview of The System Software of A Parallel
Relational Database Machine. In VLDB ’86, pages
209–219, 1986.

[12] S. Ghemawat, H. Gobioff, and S.-T. Leung.
The Google File System. SIGOPS Oper. Syst. Rev.,
37(5):29–43, 2003.

[13] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D.
Fetterly. Dryad: Distributed Data-parallel Programs
from Sequential Building Blocks. In EuroSys ’07,
pages 59–72, 2007.

[14] E. Meijer, B. Beckman, and G. Bierman. LINQ:
reconciling object, relations and XML in the .NET
framework. In SIGMOD ’06, pages 706–706, 2006.

[15] C. Olston, B. Reed, U. Srivastava, R. Kumar,
and A. Tomkins. Pig Latin: A Not-So-Foreign
Language for Data Processing. In SIGMOD ’08, pages
1099–1110, 2008.

[16] J. Ong, D. Fogg, and M. Stonebraker.
Implementation of data abstraction in the relational
database system ingres. SIGMOD Rec., 14(1):1–14,
1983.

[17] D. A. Patterson. Technical Perspective: The
Data Center is the Computer. Commun. ACM,
51(1):105–105, 2008.

[18] R. Rustin, editor. ACM-SIGMOD Workshop on
Data Description, Access and Control, May 1974.

[19] M. Stonebraker. The Case for Shared Nothing.
Database Engineering, 9:4–9, 1986.

[20] M. Stonebraker and J. Hellerstein. What Goes
Around Comes Around. In Readings in Database
Systems, pages 2–41. The MIT Press, 4th edition,
2005.

[21] D. Thomas, D. Hansson, L. Breedt, M. Clark,
J. D. Davidson, J. Gehtland, and A. Schwarz. Agile
Web Development with Rails. Pragmatic Bookshelf,
2006.

