
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REVIEW ARTICLE 
 
 
 
 

Study of Political Representations: Diplomatic 
Missions of Early Indian to Britain 

Journal of 
Advances and 

Scholarly 
Researches in 

Allied 
Education 

Vol. 3, Issue 6, 
April-2012, 

ISSN 2230-7540 

 

 

 

 

Journal of Advances in 
Science and Technology                     

Vol. IV, No. VII, November-
2012, ISSN 2230-9659 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

EVALUATION OF MAP REDUCE (MR) AND 
PARALLEL SQL DATABASE 

MANAGEMENT SYSTEMS (DBMS) FOR 
PERFORMANCE AND DEVELOPMENT 

COMPLEXITY 
 

 

 

 

 

 

 

 

 

 

 

 

www.ignited.in 

 



 

 

Surbhi Agarwal 

 

w
w

w
.i

gn
it

e
d

.i
n

 

1 

 

 Journal of Advances in Science and Technology                     
Vol. IV, No. VII, November-2012, ISSN 2230-9659 
 

Evaluation of Map Reduce (MR) and Parallel SQL 
Database Management Systems (DBMS) For 
Performance and Development Complexity 

 

Surbhi Agarwal 

Research Scholar, CMJ University, Shillong, Meghalaya, India 

Abstract: There is currently considerable enthusiasm around the MapReduce (MR) paradigm for large-

scale data analysis. Although the basic control flow of this framework has existed in parallel SQL 

database management systems (DBMS) for over 20 years, some have called MR a dramatically new 

computing model. In this paper, we describe and compare both paradigms. Furthermore, we evaluate 

both kinds of systems in terms of performance and development complexity. To this end, we define a 

benchmark consisting of a collection of tasks that we have run on an open source version of MR as well 

as on two parallel DBMSs. For each task, we measure each system’s performance for various degrees of 

parallelism on a cluster of 100 nodes. Our results reveal some interesting trade-offs. Although the 

process to load data into and tune the execution of parallel DBMSs took much longer than the MR 

system, the observed performance of these DBMSs was strikingly better. We speculate about the causes 

of the dramatic performance difference and consider implementation concepts that future systems 

should take from both kinds of architectures 

---------------------------♦----------------------------- 
 

1. INTRODUCTION  

Recently the trade press has been filled with news of 
the revolution of “cluster computing”. This paradigm 
entails harnessing large numbers of (low-end) 
processors working in parallel to solve a computing 
problem. In effect, this suggests constructing a data 
center by lining up a large number of low-end servers 
instead of deploying a smaller set of high-end servers. 
With this rise of interest in clusters has come a 
proliferation of tools for programming them. One of the 
earliest and best known such tools in MapReduce 
(MR) [8]. MapReduce is attractive because it provides 
a simple model through which users can express 
relatively sophisticated distributed programs, leading 
to significant interest in the educational community. 
For example, IBM and Google have announced plans 
to make a 1000 processor MapReduce cluster 
available to teach students distributed programming. 

Given this interest in MapReduce, it is natural to ask 
“Why not use a parallel DBMS instead?” Parallel 
database systems (which all share a common 
architectural design) have been commercially available 
for nearly two decades, and there are now about a 
dozen in the marketplace, including Teradata, Aster 
Data, Netezza, DATAllegro (and therefore soon 
Microsoft SQL Server via Project Madison), Dataupia, 
Vertica, ParAccel, Neoview, Greenplum, DB2 (via the 
Database Partitioning Feature), and Oracle (via 
Exadata). They are robust, high performance 

computing platforms. Like MapReduce, they provide 
a high-level programming environment and parallelize 
readily. Though it may seem thatMR and parallel 
databases target different audiences, it is in fact 
possible to write almost any parallel processing task 
as either a set of database queries (possibly using 
user defined functions and aggregates to filter and 
combine data) or a set ofMapReduce jobs. Inspired 
by this question, our goal is to understand the 
differences between the MapReduce approach to 
performing large-scale data analysis and the 
approach taken by parallel database systems. The 
two classes of systems make different choices in 
several key areas. For example, all DBMSs require 
that data conform to a well-defined schema, whereas 
MR permits data to be in any arbitrary format. Other 
differences also include how each system provides 
indexing and compression optimizations, 
programming models, the way in which data is 
distributed, and query execution strategies. 

The purpose of this paper is to consider these 
choices, and the trade-offs that they entail. We begin 
in Section 2 with a brief review of the two alternative 
classes of systems, followed by a discussion in 
Section 3 of the architectural trade-offs. Then, in 
Section 4 we present our benchmark consisting of a 
variety of tasks, one taken from the MR paper [8], 
and the rest a collection of more demanding tasks. In 
addition, we present the results of running the 
benchmark on a 100-node cluster to execute each 
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task. We tested the publicly available open-source 
version of MapReduce, Hadoop [1], against two 
parallel SQL DBMSs, Vertica [3] and a second system 
from a major relational vendor. We also present results 
on the time each system took to load the test data and 
report informally on the procedures needed to set up 
and tune the software for each task. 

In general, the SQL DBMSs were significantly faster 
and required less code to implement each task, but 
took longer to tune and load the data. Hence, we 
conclude with a discussion on the reasons for the 
differences between the approaches and provide 
suggestions on the best practices for any large-scale 
data analysis engine. 

Some readers may feel that experiments conducted 
using 100 nodes are not interesting or representative 
of real world data processing systems. We disagree 
with this conjecture on two points. First, as we 
demonstrate in Section 4, at 100 nodes the two 
parallel DBMSs range from a factor of 3.1 to 6.5 faster 
than MapReduce on a variety of analytic tasks. While 
MR may indeed be capable of scaling up to 1000s of 
nodes, the superior efficiency of modern DBMSs 
alleviates the need to use such massive hardware on 
datasets in the range of 1–2PB (1000 nodes with 2TB 
of disk/node has a total disk capacity of 2PB). For 
example, eBay’s Teradata configuration uses just 72 
nodes (two quad-core CPUs, 32GB RAM, 104 300GB 
disks per node) to manage approximately 2.4PB of 
relational data. As another example, Fox Interactive 
Media’s warehouse is implemented using a 40-node 
Greenplum DBMS. Each node is a Sun X4500 
machine with two dual-core CPUs, 48 500GB disks, 
and 16 GB RAM (1PB total disk space) [7]. Since few 
data sets in the world even approach a petabyte in 
size, it is not at all clear how many MR users really 
need 1,000 nodes. 

2. TWO APPROACHES TO LARGE SCALE 
DATA ANALYSIS 

The two classes of systems we consider in this paper 
run on a “shared nothing” collection of computers [19]. 
That is, the system is deployed on a collection of 
independent machines, each with local disk and local 
main memory, connected together on a highspeed 
local area network. Both systems achieve parallelism 
by dividing any data set to be utilized into partitions, 
which are allocated to different nodes to facilitate 
parallel processing. In this section, we provide an 
overview of how both the MR model and traditional 
parallel DBMSs operate in this environment. 

2.1 Map Reduce 

One of the attractive qualities about the MapReduce 
programming model is its simplicity: an MR program 
consists only of two functions, called Map and Reduce, 
that are written by a user to process key/value data 
pairs. The input data set is stored in a collection of 
partitions in a distributed file system deployed on each 

node in the cluster. The program is then injected into a 
distributed processing framework and executed in a 
manner to be described. 

The Map function reads a set of “records” from an 
input file, does any desired filtering and/or 
transformations, and then outputs a set of intermediate 
records in the form of new key/value pairs. As the Map 
function produces these output records, a “split” 
function partitions the records into R disjoint buckets 
by applying a function to the key of each output record. 
This split function is typically a hash function, though 
any deterministic function will suffice. Each map 
bucket is written to the processing node’s local disk. 
The Map function terminates having produced R 
output files, one for each bucket. In general, there are 
multiple instances of the Map function running on 
different nodes of a compute cluster. We use the term 
instance to mean a unique running invocation of 
either the Map or Reduce function. Each Map 
instance is assigned a distinct portion of the input file 
by the MR scheduler to process. If there are M such 
distinct portions of the input file, then there are R 
files on disk storage for each of the M Map tasks, for 

a total of M × R files;  
The key observation is that all Map instances use the 
same hash function; thus, all output records with the 
same hash value are stored in the same output file. 

The second phase of a MR program executes R 
instances of the Reduce program, where R is 
typically the number of nodes. The input for each 
Reduce instance Rj consists of the files 

 These files are transferred over the 
network from the Map nodes’ local disks. Note that 
again all output records from the Map phase with the 
same hash value are consumed by the same 
Reduce instance, regardless of whichMap instance 
produced the data. Each Reduce processes or 
combines the records assigned to it in some way, 
and then writes records to an output file (in the 
distributed file system), which forms part of the 
computation’s final output. 

2.2 Parallel DBMSs 

Database systems capable of running on clusters of 
shared nothing nodes have existed since the late 
1980s. These systems all support standard relational 
tables and SQL, and thus the fact that the data is 
stored on multiple machines is transparent to the 
end-user. 

Many of these systems build on the pioneering 
research from the Gamma [10] and Grace [11] 
parallel DBMS projects. The two key aspects that 
enable parallel execution are that (1) most (or even 
all) tables are partitioned over the nodes in a cluster 
and that (2) the system uses an optimizer that 
translates SQL commands into a query plan whose 
execution is divided amongst multiple nodes. 
Because programmers only need to specify their 
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goal in a high level language, they are not burdened 
by the underlying storage details, such as indexing 
options and join strategies. 

Consider a SQL command to filter the records in a 
table T1 based on a predicate, along with a join to a 
second table T2 with an aggregate computed on the 
result of the join. A basic sketch of how this command 
is processed in a parallel DBMS consists of three 
phases. 

Since the database will have already stored T1 on 
some collection of the nodes partitioned on some 
attribute, the filter sub-query is first performed in 
parallel at these sites similar to the filtering performed 
in a Map function. Following this step, one of two 
common parallel join algorithms are employed based 
on the size of data tables. 

3. ARCHITECTURAL ELEMENTS 

In this section, we consider aspects of the two system 
architectures that are necessary for processing large 
amounts of data in a distributed environment. One 
theme in our discussion is that the nature of the MR 
model is well suited for development environments 
with a small number of programmers and a limited 
application domain. This lack of constraints, however, 
may not be appropriate for longer-term and larger-
sized projects. 

3.1 Schema Support 

Parallel DBMSs require data to fit into the relational 
paradigm of rows and columns. In contrast, the MR 
model does not require that data files adhere to a 
schema defined using the relational data model. That 
is, the MR programmer is free to structure their data in 
any manner or even to have no structure at all. 

One might think that the absence of a rigid schema 
automatically makes MR the preferable option. For 
example, SQL is often criticized for its requirement that 
the programmer must specify the “shape” of the data 
in a data definition facility. On the other hand, the MR 
programmer must often write a custom parser in order 
to derive the appropriate semantics for their input 
records, which is at least an equivalent amount of 
work. But there are also other potential problems with 
not using a schema for large data sets. 

Whatever structure exists in MR input files must be 
built into the Map and Reduce programs. Existing MR 
implementations provide built-in functionality to handle 
simple key/value pair formats, but the programmer 
must explicitly write support for more complex data 
structures, such as compound keys. This is possibly 
an acceptable approach if a MR data set is not 
accessed by multiple applications. If such data sharing 
exists, however, a second programmer must decipher 

the code written by the first programmer to decide how 
to process the input file. A better approach, followed 
by all SQL DBMSs, is to separate the schema from the 
application and store it in a set of system catalogs that 
can be queried. 

But even if the schema is separated from the 
application and made available to multiple MR 
programs through a description facility, the developers 
must also agree on a single schema. This obviously 
requires some commitment to a data model or models, 
and the input files must obey this commitment as it is 
cumbersome to modify data attributes once the files 
are created. 

3.2 Indexing 

All modern DBMSs use hash or B-tree indexes to 
accelerate access to data. If one is looking for a 
subset of records (e.g., employees with a salary 
greater than $100,000), then using a proper index 
reduces the scope of the search dramatically. Most 
database systems also support multiple indexes per 
table. Thus, the query optimizer can decide which 
index to use for each query or whether to simply 
perform a brute-force sequential search. 

3.3 Programming Model 

During the 1970s, the database research community 
engaged in a contentious debate between the 
relational advocates and the Codasyl advocates [18]. 
The salient issue of this discussion was whether a 
program to access data in a DBMS should be written 
either by:  

1. Stating what you want – rather than presenting an 
algorithm for how to get it (Relational) 

2. Presenting an algorithm for data access (Codasyl) 

4. DISCUSSION 

We now discuss broader issues about the benchmark 
results and comment on particular aspects of each 
system that the raw numbers may not convey. In the 
benchmark above, both DBMS-X and Vertica execute 
most of the tasks much faster than Hadoop at all 
scaling levels. The next subsections describe, in 
greater detail than the previous section, the reasons 
for this dramatic performance difference. 

4.1 System-level Aspects 

In this section, we describe how architectural 
decisions made at the system-level affect the relative 
performance of the two classes of data analysis 
systems. Since installation and configuration 
parameters can have a significant difference in the 
ultimate performance of the system, we begin with a 
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discussion of the relative ease with which these 
parameters are set. Afterwards, we discuss some 
lower level implementation details. While some of 
these details affect performance in fundamental ways 
(e.g., the fact that MR does not transform data on 
loading precludes various I/O optimizations and 
necessitates runtime parsing which increases CPU 
costs), others are more implementation specific (e.g., 
the high start-up cost of MR). 

4.1.1 System Installation, Configuration, and 
Tuning 

We were able to get Hadoop installed and running jobs 
with little effort. Installing the system only requires 
setting up data directories on each node and deploying 
the system library and configuration files. Configuring 
the system for optimal performance was done through 
trial and error. We found that certain parameters, such 
as the size of the sort buffers or the number of 
replicas, had no affect on execution performance, 
whereas other parameters, such as using larger block 
sizes, improved performance significantly. 

The DBMS-X installation process was relatively 
straightforward. A GUI leads the user through the 
initial steps on one of the cluster nodes, and then 
prepares a file that can be fed to an installer utility in 
parallel on the other nodes to complete the installation. 
Despite this simple process, we found that DBMS-X 
was complicated to configure in order to start running 
queries. Initially, we were frustrated by the failure of 
anything but the most basic of operations. We 
eventually discovered each node’s kernel was 
configured to limit the total amount of allocated virtual 
address space. When this limit was hit, new processes 
could not be created and DBMS-X operations would 
fail. We mention this even though it was our own 
administrative error, as we were surprised that DBMS-
X’s extensive system probing and self-adjusting 
configuration was not able to detect this limitation. 

4.1.2 Task Start-up 

We found that our MR programs took some time 
before all nodes were running at full capacity. On a 
cluster of 100 nodes, it takes 10 seconds from the 
moment that a job is submitted to the JobTracker 
before the first Map task begins to execute and 25 
seconds until all the nodes in the cluster are executing 
the job. This coincides with the results in [8], where the 
data processing rate does not reach its peak for nearly 
60 seconds on a cluster of 1800 nodes. The “cold 
start” nature is symptomatic to Hadoop’s (and 
apparently Google’s) implementation and not inherent 
to the actual MR model itself. For example, we also 
found that prior versions of Hadoop would create a 
new JVM process for each Map and Reduce instance 
on a node, which we found increased the overhead of 
running jobs on large data sets; enabling the JVM 
reuse feature in the latest version of Hadoop improved 
our results for MR by 10–15%.  

4.1.3 Compression 

Almost every parallel DBMS (including DBMS-X and 
Vertica) allows for optional compression of stored 
data. It is not uncommon for compression to result in a 
factor of 6–10 space savings. Vertica’s internal data 
representation is highly optimized for data 
compression and has an execution engine that 
operates directly on compressed data (i.e., it avoids 
decompressing the data during processing whenever 
possible). In general, since analysis tasks on large 
data sets are often I/O bound, trading CPU cycles 
(needed to decompress input data) for I/O bandwidth 
(compressed data means that there is less data to 
read) is a good strategy and translates to faster 
execution. In situations where the executor can 
operate directly on compressed data, there is often no 
trade-off at all and compression is an obvious win. 

Hadoop and its underlying distributed filesystem 
support both block-level and record-level 
compression on input data. We found, however, that 
neither technique improved Hadoop’s performance 
and in some cases actually slowed execution. It also 
required more effort on our part to either change 
code or prepare the input data. It should also be 
noted that compression was also not used in the 
original MR benchmark [8]. 

4.1.4 Loading and Data Layout 

Parallel DBMSs have the opportunity to reorganize 
the input data file at load time. This allows for certain 
optimizations, such as storing each attribute of a 
table separately (as done in column-stores such as 
Vertica). For read-only queries that only touch a 
subset of the attributes of a table, this optimization 
can improve performance by allowing the attributes 
that are not accessed by a particular query to be left 
on disk and never read. Similar to the compression 
optimization described above, this saves critical I/O 
bandwidth. MR systems by default do not transform 
the data when it is loaded into their distributed file 
system, and thus are unable to change the layout 

of input data, which precludes this class of 
optimization opportunities.  

4.1.5 Execution Strategies 

As noted earlier, the query planner in parallel 
DBMSs are careful to transfer data between nodes 
only if it is absolutely necessary. This allows the 
systems to optimize the join algorithm depending on 
the characteristics of the data and perform push-
oriented messaging without writing intermediate data 
sets. Over time, MR advocates should study the 
techniques used in parallel DBMSs and incorporate 
the concepts that are germane to their model. In 
doing so, we believe that again the performance of 
MR frameworks will improve dramatically. 
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4.1.6 Failure Model 

As discussed previously, while not providing support 
for transactions, MR is able to recover from faults in 
the middle of query execution in a way that most 
parallel database systems cannot. Since parallel 
DBMSs will be deployed on larger clusters over time, 
the probability of mid-query hardware failures will 
increase. Thus, for long running queries, it may be 
important to implement such a fault tolerance model. 
While improving the fault-tolerance of DBMSs is clearly 
a good idea, we are wary of devoting huge 
computational clusters and “brute force” approaches to 
computation when sophisticated software would could 
do the same processing with far less hardware and 
consume far less energy, or in less time, thereby 
obviating the need for a sophisticated fault tolerance 
model. A multithousand-node cluster of the sort 
Google, Microsoft, and Yahoo! run uses huge amounts 
of energy, and as our results show, for many data 
processing tasks a parallel DBMS can often achieve 
the same performance using far fewer nodes. As such, 
the desirable approach is to use high-performance 
algorithms with modest parallelism rather than brute 
force approaches on much larger clusters. 

4.2 User-level Aspects 

A data processing system’s performance is irrelevant 
to a user or an organization if the system is not usable. 
In this section, we discuss aspects of each system that 
we encountered from a userlevel perspective while 
conducting the benchmark study that may promote or 
inhibit application development and adoption. 

4.2.1 Ease of Use 

Once the system is on-line and the data has been 
loaded, the programmer then begins to write the query 
or the code needed to perform their task. Like other 
kinds of programming, this is often an 

iterative process: the programmer writes a little bit of 
code, tests it, and then writes some more. The 
programmer can easily determine whether his/her 
code is syntactically correct in both types of systems: 
the MR framework can check whether the user’s code 
compiles and the SQL engines can determine whether 
the queries parse correctly. Both systems also provide 
runtime support to assist users in debugging their 
programs. 

It is also worth considering the way in which the 
programmer writes the query. MR programs in Hadoop 
are primarily written in Java (though other language 
bindings exist). Most programmers are more familiar 
with object-oriented, imperative programming than with 
other language technologies, such as SQL. That said, 
SQL is taught in many undergraduate programs and is 
fairly portable – we were able to share the SQL 

commands between DBMS-X and Vertica with only 
minor modifications. 

4.2.2 Additional Tools 

Hadoop comes with a rudimentary web interface that 
allows the user to browse the contents of the 
distributed filesystemand monitor the execution of 
jobs. Any additional tools would most likely at this time 
have to be developed in house. 

SQL databases, on the other hand, have tons of 
existing tools and applications for reporting and data 
analysis. Entire software industries have developed 
around providing DBMS users with third-party 
extensions. The types of software that many of these 
tools include (1) data visualization, (2) business 
intelligence, (3) data mining, (4) data replication, and 
(5) automatic database design. Because MR 
technologies are still nascent, the market for such 
software for MR is limited; however, as the user base 
grows, many of the existing SQL-based tools will 
likely support MR systems. 

5. CONCLUSION 

There are a number of interesting conclusions that 
can be drawn from the results presented in this 
paper. First, at the scale of the experiments we 
conducted, both parallel database systems displayed 
a significant performance advantage over Hadoop 
MR in executing a variety of data intensive analysis 
benchmarks. Averaged across all five tasks at 100 
nodes, DBMS-X was 3.2 times faster than MR and 
Vertica was 2.3 times faster than DBMS-X.While we 
cannot verify this claim, we believe that the systems 
would have the same relative performance on 1,000 
nodes (the largest Teradata configuration is less than 
100 nodes managing over four petabytes of data). 
The dual of these numbers is that a parallel database 
system that provides the same response time with far 
fewer processors will certainly uses far less energy; 
theMapReduce model on multi-thousand node 
clusters is a brute force solution that wastes vast 
amounts of energy. While it is rumored that the 
Google version of MR is faster than the Hadoop 
version, we did not have access to this code and 
hence could not test it. We are doubtful again, 
however, that there would be a substantial difference 
in the performance of the two versions as MR is 
always forced to start a query with a scan of the 
entire input file. 

This performance advantage that the two database 
systems share is the result of a number of 
technologies developed over the past 25 years, 
including (1) B-tree indices to speed the execution of 
selection operations, (2) novel storage mechanisms 
(e.g., columnorientation), (3) aggressive compression 
techniques with ability to operate directly on 
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compressed data, and (4) sophisticated parallel 
algorithms for querying large amounts of relational 
data. In the case of a column-store database like 
Vertica, only those columns that are needed to 
execute a query are actually read from disk. 
Furthermore, the column-wise storage of data results 
in better compression factors (approximately a factor 
of 2.0 for Vertica, versus a factor of 1.8 for DBMS-X 
and 1.25 for Hadoop); this also further reduces the 
amount of disk I/O that is performed to execute a 
query. 

Extensibility was another area where we found the 
database systems we tested lacking. Extending a 
DBMS with user-defined types and functions is an idea 
that is now 25 years old [16]. Neither of the parallel 
systems we tested did a good job on the UDF 
aggregation tasks, forcing us to find workarounds 
when we encountered limitations (e.g., Vertica) and 
bugs (e.g., DBMS-X). 

While all DB systems are tolerant of a wide variety of 
software failures, there is no question that MR does a 
superior job of minimizing the amount of work that is 
lost when a hardware failure occurs. This capability, 
however, comes with a potentially large performance 
penalty, due to the cost of materializing the 
intermediate files between the map and reduce 
phases. Left unanswered is how significant this 
performance penalty is. Unfortunately, to investigate 
this question properly requires implementing both the 
materialization and no-materialization strategies in a 
common framework, which is an effort beyond the 
scope of this paper. Despite a clear advantage in this 
domain, it is not completely clear how significant a 
factor Hadoop’s ability to tolerate failures during 
execution really is in practice. In addition, if a MR 
system needs 1,000 nodes to match the performance 
of a 100 node parallel database system, it is ten times 
more likely that a node will fail while a query is 
executing. 

 

Computing this in parallel requires producing a total 
order of all employees followed by a second phase in 
which each node adjusts the rank values of its records 
with the counts of the number of records on each node 
to its “left” (i.e., those nodes with salary values that are 
strictly smaller). Although aMR program could perform 
this sort in parallel, it is not easy to fit this query into 
the MR paradigm of group by aggregation. RANK is 
just one of the many powerful analytic functions 
provided by modern parallel database systems. For 
example, both Teradata and Oracle support a rich set 
of functions, such as functions over windows of 
ordered records. 

Two architectural differences are likely to remain in the 
long run. MR makes a commitment to a “schema later” 

or even “schema never” paradigm. But this lack of a 
schema has a number of important consequences. 
Foremost, it means that parsing records at run time is 
inevitable, in contrast to DBMSs, which perform 
parsing at load time. This difference makes 
compression less valuable in MR and causes a portion 
of the performance difference between the two classes 
of systems. Without a schema, each user must write a 
custom parser, complicating sharing data among 
multiple applications. Second, a schema is needed for 
maintaining information that is critical for optimizing 
declarative queries, including what indices exist, how 
tables are partitioned, table cardinalities, and 
histograms that capture the distribution of values 
within a column. 

In our opinion there is a lot to learn from both kinds of 
systems. Most importantly is that higher level 
interfaces, such as Pig [15], Hive [2], are being put 
on top of the MR foundation, and a number of tools 
similar in spirit but more expressive than MR are 
being developed, such as Dryad [13] and Scope [5]. 
This will make complex tasks easier to code in MR-
style systems and remove one of the big advantages 
of SQL engines, namely that they take much less 
code on the tasks in our benchmark. For parallel 
databases, we believe that both commercial and 
open-source systems will dramatically improve the 
parallelization of user-defined functions. Hence, the 
APIs of the two classes of systems are clearly 
moving toward each other. Early evidence of this is 
seen in the solutions for integrating SQL with MR 
offered by Greenplum and Asterdata. 
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