

REVIEW ARTICLE

Study of Political Representations: Diplomatic
Missions of Early Indian to Britain

Journal of
Advances and

Scholarly
Researches in

Allied
Education

Vol. 3, Issue 6,
April-2012,

ISSN 2230-7540

Journal of Advances in
Science and Technology

Vol. IV, No. VII, November-
2012, ISSN 2230-9659

ENABLING EFFECTIVE END-TO-END
DESIGN AND CONFIGURATION SPANNING
THE DATABASE AND STORAGE SYSTEM

TIERS

www.ignited.in

Vikrant Chauhan

w
w

w
.i

gn
it

e
d

.i
n

1

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

Enabling Effective End-To-End Design and
Configuration Spanning the Database and

Storage System Tiers

Vikrant Chauhan

Research Scholar, CMJ University, Shillong, Meghalaya, India

Abstract: Modern storage systems are sophisticated. Simple direct attached storage devices are giving

way to storage systems that are shared, flexible, virtualized and network-attached. Today, storage

systems have their own administrators, who use specialized tools and expertise to configure and manage

storage resources. Although the separation of storage management and database management has many

advantages, it also introduces problems. Database physical design and storage configuration are closely

related tasks, and the separation makes it more difficult to achieve a good end-toend design. In this

paper, we attempt to close this gap by addressing the problem of predicting the storage workload that

will be generated by a database management system. Specifically, we show how to translate a database

workload description, together with a database physical design, into a characterization of the storage

workload that will result. Such a characterization can be used by a storage administrator to guide storage

configuration. The ultimate goal of this work is to enable effective end-to-end design and configuration

spanning both the database and storage system tiers. We present an empirical assessment of the cost of

workload prediction as well as the accuracy of the result.

---------------------------♦-----------------------------

1. INTRODUCTION

The complexity of modern enterprise computing
environments is prompting changes in the way that
computing resources and the systems that depend on
them are deployed and managed [6, 9, 12, 13, 19]. In
the case of storage re-sources, simple, direct-attached
storage devices are giving way to shared, flexible,
virtualized, network-attached storage systems.
Increasingly, storage resources are consolidated into a
common pool, virtualized to accommodate individual
application requirements, and shared by multiple
enterprise applications, including database
management systems (DBMS). Furthermore, storage
resources are increasingly administered separately
from the server infrastructure; storage administrators
are expected to balance the requirements of multiple
database systems and other storage clients. As a
result, database administrators (DBAs) are no longer
in direct control of the design and configuration of their
database systems’ underlying storage resources.

Managing the storage infrastructure is, like database
administration, a complex task. A storage administrator
(SA) has to configure storage arrays, create logical
units at storage arrays, create logical volumes at
servers, configure storage controllers and storage
network switches with appropriate access credentials,
and manage the ongoing usage of the storage devices
to prevent bottlenecks or resource shortages.

Configuration decisions made by the SA determine
the performance, reliability, and capacity
characteristics of the storage system as seen by the
DBMS. To help SAs cope with the complexity of
these tasks, researchers have developed storage
management tools that can be used to automate
storage design and configuration tasks [3, 4, 8, 16].
Effective storage administration, whether manual or
automatic, depends on knowledge of the storage
system workload. However, accurate workload
characterizations can be difficult to come by,
particularly at initial configuration time. Often storage
administrators must rely on rough workload
“guesstimates”, perhaps informed by previous
experience with other systems or general knowledge
of the clients that the storage system is expected to
support. Once the storage system is operational,
workload characteristics can be observed. However,
such observations are not a panacea: they may be
expensive to obtain and use, they do not solve the
initial configuration problems, and they are of no use
in addressing “what if” questions. For example, a
DBA may be considering a possible physical design
change such as the creation of an index. If created,
this index would affect the I/O workload experienced
by the underlying storage system. Direct observation
of the current storage system workload does not by
itself provide any guidance as to what the storage
workload would look like if the index were added.

Vikrant Chauhan

w
w

w
.i

g
n

it
e

d
.i
n

2

 Enabling Effective End-To-End Design and Configuration Spanning the Database and Storage System
Tiers

In this paper, we attempt to close the information gap
between the database tier and the storage tier by
address-ing the problem of predicting the storage
workload that will be generated by a database
management system. Specifically, we show how to
translate a database workload description, together
with a database physical design, into a
characterization of the storage workload that will
result.

Figure 1: End-to-End Physical Design using Existing
Design Advisers

By estimating database systems’ storage workloads,
we can provide storage administrators with information
that they can use to make informed planning, design,
and configuration decisions. In doing so, we enable
end-to-end solutions to physical design and storage
configuration problems. One example of this is shown
in Figure 1, which illustrates how existing database
physical design tools and storage configuration tools
could be combined to determine both a database
physical design and an appropriate storage
configuration for a given database workload, while
preserving the administrative autonomy of the
database and storage tiers. With storage workload
estimation, both the DBA and SA have sufficient
information to address their part of the end-to-end
design and configuration problem.

2. PROBLEM FORMULATION

In this section, we will define the problem of estimating
storage workload characteristics given a specification
of the database workload. To formulate this problem
more precisely, we begin by defining what we mean by
“database workload” and “storage workload”.

2.1 Database Workload Model

Existing relational database design tools typically
expect the database workload to be defined as a set of
SQL statements (queries and updates) along with
some indication of the relative frequency of occurrence

of each statement [2, 20]. We use a similar
characterization of the database workload for our
storage workload estimation problem, so that a single
workload description can be used for both tasks.

Specifically, we assume that the workload is
characterized by a fixed set Q of SQL statements
defined over a known database schema. We refer to
each such statement as a query type. Each query type
Qi has an associated weight fi which represents its
prevalence in the workload. The proportion of queries
of type Qi in the workload is given by

This kind of database workload characterization
describes the mix of queries and updates in the
database workload. This is sufficient for tasks such
as index selection, where the goal is to choose a set
of indexes that will provide superior performance
relative to the performance achievable using other
sets of indexes. However, we would like our storage
workload estimates to be useful for a variety of
storage management tasks, including those that
require information about absolute frequency of
occurrence of the various queries. An example of
such a task is capacity planning. To enable this, we
also require that the database workload description
include a specification of a target operating point for
the database system. We use two parameters to
characterize an operating point. The first is the total
query throughput, denoted by _. The second is the
query multiprogramming level, k, which describes the
expected number of concurrently executing queries
at any given time.

Finally, since our storage workload estimator relies
on the database system’s query optimizer, we
require that optimizer be configured to behave as it
would at the target operating point. In particular,
database statistics should be available so that the
query optimizer will choose appropriate query
execution plans. Again, existing database
administration tools have similar requirements for the
availability of statistics, and some database systems
support the definition of hypothetical database
instances to support costbased “what if” analyses
without the need to populate the hypothetical
instance [5]. We assume that a database physical
design has been selected, perhaps through the use
of a physical design advisor [2, 20], and that the
physical design is known to the query optimizer. We
use D to represent the set of physical database
objects: tables, indexes, materialized views and so
on. Figure 2 summarizes the database workload
parameters.

2.2 I/O Workload Model

One way to characterize I/O workloads is to use a
trace of I/O events, or a set of traces. Although
traces are a very detailed and expressive way to

Vikrant Chauhan

w
w

w
.i

gn
it

e
d

.i
n

3

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

describe storage workloads, they have some
disadvantages. They are large and expensive to store
and manipulate. Traces of database I/O workloads are
also expensive to collect, as collection requires
populat-ing the database and applying a realistic load.
Trace-based workload descriptions cannot be used as
input to analytical models of storage system behavior.

Figure 2: Database Workload Model Parameters

Finally, traces tend to be specific to a particular
storage configuration, and difficult to generalize. It is
prohibitively expensive to collect traces from multiple
candidate storage configurations. Instead, we adopt a
more abstract I/O workload model called the Rome
model [18]. The Rome model is the unifying “glue” for
a collection of storage management tools that support
performance modeling, capacity planning, storage
system design and configuration, and other tasks [3, 4,
16]. The Rome model is not specifically designed to
model the I/O workloads generated by database
management systems. It is a general purpose model
intended to model storage workloads generated by
any kind of storage client. Since shared, consolidated
storage systems must accommodate workloads from a
variety of clients, including databases, we believe that
it is important to target a generic workload model.
Doing so allows a storage administrator to aggregate
workload descriptions from multiple storage
applications. By targeting the Rome model in
particular, we are also able to leverage existing Rome-
based workload analysis and storage management
tools.

The Rome model views the storage system abstractly,
as a set of stores. A store can be thought of as a
virtual block storage device, disjoint from other stores,
to which block read and write requests can be
directed. The I/O workload directed to a store is
represented by one or more concurrent streams. A
stream consists of bursts of I/O request activity of
duration ton interleaved with idle periods of duration

 during which no requests occur. During each
on-burst, read requests to the underlying store occur

at rate and write requests occur at rate .

Each I/O request has a starting position (within the
underlying store) and a size, or length, B. The starting
position of each request is determined by a run length
parameter L. Successive requests in a stream start
where the previous request left off, until the total
number of requests in the run reaches L. The next

request then starts a new run, with a randomly chosen
starting position. Thus, L = 1 models a random I/O
request pattern, while larger values of L model
sequentiality. Figure 3 summarizes the parameters
associated with a Rome request stream. Together,
these parameters describe the request stream
properties that are important to the underlying storage
modeling and management tools: request rates,
read/write mix, burstiness, request size, and
sequentiality.

In addition to these per-stream properties, Rome also
describes burst correlations, which model the amount
of temporal overlap among the bursts of different
streams. Given a set S of streams, Rome defines an
|S|×|S| overlap matrix C. Entry C[i, j] in the overlap
matrix describes the percentage of stream i’s burst
period during which stream j is also active.

Figure 3: I/O Request Stream Parameters in Rome

Note that, as defined by the Rome model, the overlap
matrix need not be symmetric. For example, consider
two streams Si and Sj , with ton [i] = 100 and ton [j] =
10, for which Sj ’s bursts are completely contained
within Si’s bursts. This will be described by C[i, j] =
10% and C[j, i] = 100%.

3. WORKLOAD ESTIMATION

Figure 4 gives a high-level outline of our method of
estimating a Rome I/O workload model. As described
in Section 2.3, the output of this method is one set of
Rome I/O model parameter values (as shown in
Table 3) for each physical database object Dj 2 D.
The model parameters for Dj describe the I/O
workload that the DBMS is expected to apply to the
stored representation of that object. The method
shown in Figure 4 consists of three phases. First, we
generate an I/O request sequence corresponding to
each query type in the database workload (Figure 4
lines 1-4). Second, we merge those individual
sequences into a single I/O request trace, which we
call the representative I/O trace for the given
database workload and operating point (line 5).
Finally, we project each physical object’s requests
from the representative trace and fit the Rome stream
parameters to the projected trace (lines 6-9). In the

Vikrant Chauhan

w
w

w
.i

g
n

it
e

d
.i
n

4

 Enabling Effective End-To-End Design and Configuration Spanning the Database and Storage System
Tiers

remainder of this section, we describe each of these
phases in more detail.

3.1 Estimating Query Request Sequences

An I/O request sequence is an ordered list of records,
each of which describes a single I/O operation.
Specifically, each record consists of the following
fields: physical object identifier, starting offset within
the physical object, request length, and request type
(read or write). Note that, in Figure 4, we have
distinguished request sequences from request traces.
A request trace differs from a request sequence in that
the former includes timing information for each I/O
operation, while the latter does not.

The first phase of the storage workload estimation
process is to predict a separate I/O request sequence
for each type of query in the database workload.
These request sequences describe the I/O behavior of
a single query running in isolation. Figure 5
summarizes our approach. To obtain these
sequences, we perform a data-free simulation of the
control flow of each query’s execution plan. During the
data-free simulation of a plan, the plan operators
generate I/O records describing any I/O operations
that they would have generated during a normal plan
execution.

However, they do not actually generate the I/O
operations. These I/O records are concatenated to
form the I/O request sequence for the query.

When a query plan is actually executed by the
database system, its control flow depends on the data
that is flowing through the plan. During our data-free
simulation, we neither retrieve the data nor flow the
data through the plan. The simulation relies instead on
the cardinality estimates produced by the query
optimizer to approximate the control flow that would
have occurred during an actual execution of the plan.
For example, for a tuple-oriented nested loop join, we
use the optimizer’s estimate of the cardinalities of the
inner and outer relations and its estimate of the join
selectivity to estimate the number of times that the join
operator’s left and right children in the plan will be
asked to produce data. The simulation also relies on
some operator-specific optimizer assumptions. For
example, a sort operation is assumed to create initial
runs that are twice the size of the working memory
available for the sort.

Figure 5: Generating I/O Request Sequences

By performing the data-free simulations, we hope to
capture several important properties of the I/O
workload that will be generated by queries of each
type. First, the resulting I/O sequences will contain
the correct numbers of I/O requests for each physical
database object used by the query, up to the
accuracy of the query optimizer’s cardinality
estimates and our own simplifying assumptions in
the simulation.

Second, the I/O request sequences will distinguish
sequential and random I/O, based on the type of
operator that is generating the requests, as well as
information from the database catalogue. For
example, a table scan of a relation will generate
sequential requests, while an index scan of the same
relation using an uncorrelated secondary index will
generate random requests. Finally, the sequence will
capture the interleaving of requests for the various
physical database objects used by the query plan.
For example, the simulation understands that a hash
join will first retrieve the entire build input and then
retrieve the entire probe input, resulting to non-
interleaved access to the physical objects that
provide the build and probe inputs. Conversely, a
nested loop join will result in interleaved accesses to
the inner and outer inputs.

Vikrant Chauhan

w
w

w
.i

gn
it

e
d

.i
n

5

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

Figure 6: Data-Free Simulation of Postgres Plan
Operators. In the diagram, operators are annotated
with the names of state variables maintained by the
simulation. Operator inputs and outputs are annotated
with the names of Postgres optimizer statistics and
configuration parameters that are used by the
simulator.

Our implementation of data-free simulation is
embodied in a modified version of Postgres. In our
version of Postgres, there are 18 different operators
that may appear in execution plans. Our plan simulator
handles most aspects of these operator types. One
limitation of our current implementation is that certain
kinds of SQL subqueries (those that result in query-
valued qualifiers in plan nodes) are not handled. This
is a restriction of our current prototype, not a
fundamental restriction. We do not have space here to
present the entire simulator. However, Figure 6
illustrates the simulation for three of the Postgres
operators: sequential scan, index scan, and nested
loop join.

Note that data-free simulation of a query plan is
generally much faster than the actual execution of the
plan. This is because the simulation does not retrieve
any stored data, does not flow these data through the
plan operators, and does not generate any
intermediate or final query results. More information
about the cost of data-free simulation is given in
Section 4.4.

3.2 Generating the Representative Trace

The I/O request sequences generated in the first
phase capture the I/O workload characteristics of a
single workload query running in isolation. In the

second phase, we generate a representative I/O trace
that describes the aggregate storage workload of the
entire database workload. The generation of the
representative I/O trace adds three kinds of
information to the individual query request sequences.
First, since representative I/O trace describes the
aggregate storage workload generated by the
database system, it reflects the mixture and frequency
of the various types of queries that make up the
database workload. Second, it accounts for the effect
of the database system’s buffer cache on the
aggregate I/O stream. Finally, unlike the perquery
request sequences, the representative trace
incorporates timing information in the form of an
arrival timestamp for each I/O request. These
timestamps reflect the I/O request throughput that will
be required to support the database system at the
specified operating point.

Figure 7: Generating the Representative I/O Trace

Figure 7 summarizes the process of generating the
representative I/O trace. We use a simple
probabilistic operational model of the database
system to generate a merged I/O sequence from the
per-query I/O sequences obtained in the first phase.
The database system is assumed to have a fixed
query multiprogramming level k at the target
operating point. k is specified as a workload
parameter (see Figure 2). To generate a merged I/O
sequence, k query types are selected at random, with
query type i selected with probability proportional to fi.
The I/O sequences for the selected query types are
then round-robin merged to produce a single request
sequence. When one of the per-query sequences is
exhausted during the merger, another query type is
selected and its I/O sequence replaces the exhausted
one. This generative process continues until a

Vikrant Chauhan

w
w

w
.i

g
n

it
e

d
.i
n

6

 Enabling Effective End-To-End Design and Configuration Spanning the Database and Storage System
Tiers

specified number of per-query I/O sequences have
been merged.

As the merged request sequence is formed, we apply
it to a DBMS-specific buffer cache model. To model
the buffer cache, we are currently using a simulation of
the 2Q cache replacement algorithm [7] that is used by
Postgres. This simulation is parameterized by the
buffer cache size. The effect of the simulation is to
remove from the request sequence any I/O requests
that hit the (simulated) buffer cache. Finally, we
associate timing information with each remaining I/O
request in the sequence to produce the representative
I/O trace. To do this, we use the query throughput _
that is supplied as a parameter to the workload
estimation process. We first translate query throughput
to I/O throughput by multiplying query throughput by
the expected number of I/O requests per query:

where Ni is the cache-corrected length of I/O request
sequence (from phase 1) for query type Qi. The jth
request in the representative I/O trace is assigned an
arrival time of j/_io. This reflects the requirement that
the necessary query throughput at the target operating
point be satisfied by a storage system capable of
handling I/O requests at this rate.

4. RELATED WORK

In the database tier, a variety of tools are available to
address various aspects of the database physical
design problem, such as choosing indexes and
materialized views [2, 20] and partitioning relations [2,
11]. These tools typically expect as input a database
workload description similar to the one that is expected
by our estimation technique. These tools are
complementary to the workload estimation technique
described in this paper. Agrawal, Chaudhuri, Das, and
Narasayya addressed the problem of automating the
layout of relational databases on a given set of storage
devices [1]. Internally, their solution uses an access
graph to characterize the I/O resulting from a given
database workload. The graph describes estimated
number of I/Os to each DB object and edge weights
that characterize co-access (similar to our overlap
matrix C in our Rome-based descriptions). This is a
less expressive model than the one we have used. For
example, it makes no distinction between sequential
and random I/O to an object and no distinction
between reads and writes. More significantly, that work
views storage layout as a a database administration
problem. In contrast, our goal is to generate accurate
database workload characterization to enable storage
administrators to make informed decisions about
layout and other related problems. Wasserman,
Martin, Skillcorn and Rizvi [17] describe a workload
characterization approach for database systems.

They characterize according to several resource-
related attributes, such as CPU consumption and
sequential and random I/O rates, as well as other
properties such as join degree. Our workload
characterizations are more detailed, and they do not
contain DBMS-specific attributes, such as join degree,
that are not meaningful to the storage tier.

Narayanan, Thereska and Ailamaki describe a
database resource advisor for predicting transaction
response times and throughput based on end-to-end
tracing [10]. Their technique relies on instrumentation
and tracing of live database systems. Like the
technique described here, their approach seeks to
identify a configuration-independent workload
description with which to make model-based
performance predictions. This allows the advisor to
speculate about the impact of hypothetical changes in
the underlying resources. However, because this
approach relies on tracing a running database
system, it has no means of speculating about the
effects on the resource workloads of hypothetical
changes in the database system workload or
physical design. Our approach does accommodate
such analyses. There are several tools that address
the automation of storage system design and
management, though these are somewhat less
mature than production database physical design
advisors. Disk Array Designer [4] addresses the
problem of storage system configuration: which
arrays to define, how to configure each array, and
how to lay out application data to the arrays.
Hippodrome [3] uses these design tools to automate
the management of a storage system as the
workloads change, using a measure, analyze,
reconfigure cycle. Similar design and automation
tools also exists for designing storage area networks
[16] (SANs) that connect storage devices to servers,
and for designing data reliability solutions (e.g.,
backups, mirrors, snapshots, etc) and configurations
[8]. All of these storage layer tools require storage
workload characterizations, and can directly take
advantage of our storage workload estimator.

5. CONCLUSION

We have presented a technique for estimating the
storage system workloads that are generated by
database management systems. Our technique
generates storage workload models in a form that is
easily used by storage administration tools, such as
configuration advisors. We have demonstrated the
feasibility of this approach by implementing it in
Postgres. Our experimental results suggest that the
workload estimations produced by our technique are
sufficiently accurate to be useful for predicting the
performance of alternative storage configurations.
We expect the estimates to be of similar use for
other related tasks, such as capacity planning. This
is the first attempt that we are aware of to design
tools intended to improve the flow of information from
the database tier to the storage tier.

Vikrant Chauhan

w
w

w
.i

gn
it

e
d

.i
n

7

 Journal of Advances in Science and Technology
Vol. IV, No. VII, November-2012, ISSN 2230-9659

6. REFERENCES

[1] S. Agrawal, S. Chaudhuri, A. Das, and V.
Narasayya. Automating layout of relational databases.
In International Conference on Data Engineering
(ICDE’03), pages 607–618, 2003.

[2] S. Agrawal, S. Chaudhuri, L. Koll´or, A. P.
Marathe, V. R. Narasayya, and M. Syamala. Database
tuning advisor for Microsoft SQL server. In
International Conference on Very Large Data Bases
(VLDB ’04), pages 1110–1121, 2004.

[3] E. Anderson, M. Hobbs, K. Keeton, S. Spence,
M. Uysal, and A. Veitch. Hippodrome: running circles
around storage administration. In Conf. on File and
Storage Technology, pages 175–188, Jan. 2002.

[4] E. Anderson, S. Spence, R. Swaminathan, M.
Kallahalla, and Q. Wang. Quickly finding near-optimal
storage designs. ACM Transactions on Computer
Systems, 23(4):337–374, 2005.

[5] S. Chaudhuri and V. R. Narasayya. Autoadmin
’what-if’ index analysis utility. In Proc. ACM SIGMOD
International Conference on Management of Data,
pages 367–378, 1998.

[6] I. Foster and S. Tuecke. Describing the
elephant: The different faces of IT as service. Queue,
3(6):26–29, 2005.

[7] T. Johnson and D. Shasha. 2Q: A low
overhead high performance buffer management
replacement algorithm. In Proc. International
Conference on Very Large Data Bases (VLDB’94),
pages 439–450, 1994.

[8] K. Keeton, C. Santos, D. Beyer, J. Chase, and
J. Wilkes. Designing for disasters. In Proc. of File and
Storage Technologies (FAST’04), pages 7–12, March-
April 2004.

[9] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. IEEE Computer, 36(1):41–50,
January 2003. [10] D. Narayanan, E. Thereska, and A.
Ailamaki. Continuous resource monitoring for self-
predicting DBMS. In International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS’05), pages
239–248, 2005.

[11] J. Rao, C. Zhang, G. M. Lohman, and N.
Megiddo. Automating physical database design in a
parallel database. In Proc. ACM SIGMOD Int’l Conf. on
Management of Data, pages 558–569, 2002.

[12] S. Singhal, M. Arlitt, D. Beyer, S. Graupner, V.
Machiraju, J. Pruyne, J. Rolia, A. Sahai, C. Santos, J.
Ward, and X. Zhu. Quartermaster – a resource utility

system. In Proceedings of the 9th IFIP/IEEE Intl.
Symposium on Integrated Network Management, May
2005.

[13] Sun Microsystems. Sun Grid Compute Utility:
Reference Guide, June 2006. Part No. 819-5131-11.

[14] M. Uysal, G. A. Alvarez, and A. Merchant. A
modular, analytical throughput model for modern disk
arrays. In Proceedings of the Ninth International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunications Systems
(MASCOTS-2001), pages 183–192, 2001.

[15] A. Veitch and K. Keeton. The Rubicon
workload characterization tool. Technical Report
HPL-SSP-2003-13, HP Laboratories, Mar. 2003.

[16] J. Ward, M. O’Sullivan, T. Shahoumian, and
J. Wilkes. Appia: automatic storage area network
design. In Conference on File and Storage
Technology (FAST’02), pages 203–217, Jan. 2002.

[17] T. J. Wasserman, P. Martin, D. B. Skillicorn,
and H. Rizvi. Developing a characterization of
business intelligence workloads for sizing new
database systems. In Proceedings of the 7th ACM
International Workshop on Data Warehousing and
OLAP, pages 7–13. ACM Press, 2004.

[18] J. Wilkes. Traveling to Rome: QoS
specifications for automated storage system
management. In Proc. Intl. Workshop on Quality of
Service (IWQoS’2001), number 2092 in Lecture
Notes in Computer Science, pages 75–91. Springer-
Verlag, June 2001.

[19] J. Wilkes, G. Janakiraman, P. Goldsack, L.
Russell, S. Singhal, and A. Thomas. Eos – the dawn
of the resource economy. In 8th Workshop on Hot
Topics in Operating Systems, May 2001.

[20] D. C. Zilio, C. Zuzarte, S. Lightstone, W. Ma,
G. M. Lohman, R. Cochrane, H. Pirahesh, L. S.
Colby, J. Gryz, E. Alton, D. Liang, and G. Valentin.
Recommending materialized views and indexes with
IBM DB2 design advisor. In IEEE Int’l Conf. on
Autonomic Computing, pages 180–188, 2004.

