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Abstract: Modern storage systems are sophisticated. Simple direct attached storage devices are giving 

way to storage systems that are shared, flexible, virtualized and network-attached. Today, storage 

systems have their own administrators, who use specialized tools and expertise to configure and manage 

storage resources. Although the separation of storage management and database management has many 

advantages, it also introduces problems. Database physical design and storage configuration are closely 

related tasks, and the separation makes it more difficult to achieve a good end-toend design. In this 

paper, we attempt to close this gap by addressing the problem of predicting the storage workload that 

will be generated by a database management system. Specifically, we show how to translate a database 

workload description, together with a database physical design, into a characterization of the storage 

workload that will result. Such a characterization can be used by a storage administrator to guide storage 

configuration. The ultimate goal of this work is to enable effective end-to-end design and configuration 

spanning both the database and storage system tiers. We present an empirical assessment of the cost of 

workload prediction as well as the accuracy of the result. 

---------------------------♦----------------------------- 
 

1. INTRODUCTION  

The complexity of modern enterprise computing 
environments is prompting changes in the way that 
computing resources and the systems that depend on 
them are deployed and managed [6, 9, 12, 13, 19]. In 
the case of storage re-sources, simple, direct-attached 
storage devices are giving way to shared, flexible, 
virtualized, network-attached storage systems. 
Increasingly, storage resources are consolidated into a 
common pool, virtualized to accommodate individual 
application requirements, and shared by multiple 
enterprise applications, including database 
management systems (DBMS). Furthermore, storage 
resources are increasingly administered separately 
from the server infrastructure; storage administrators 
are expected to balance the requirements of multiple 
database systems and other storage clients. As a 
result, database administrators (DBAs) are no longer 
in direct control of the design and configuration of their 
database systems’ underlying storage resources. 

Managing the storage infrastructure is, like database 
administration, a complex task. A storage administrator 
(SA) has to configure storage arrays, create logical 
units at storage arrays, create logical volumes at 
servers, configure storage controllers and storage 
network switches with appropriate access credentials, 
and manage the ongoing usage of the storage devices 
to prevent bottlenecks or resource shortages. 

Configuration decisions made by the SA determine 
the performance, reliability, and capacity 
characteristics of the storage system as seen by the 
DBMS. To help SAs cope with the complexity of 
these tasks, researchers have developed storage 
management tools that can be used to automate 
storage design and configuration tasks [3, 4, 8, 16]. 
Effective storage administration, whether manual or 
automatic, depends on knowledge of the storage 
system workload. However, accurate workload 
characterizations can be difficult to come by, 
particularly at initial configuration time. Often storage 
administrators must rely on rough workload 
“guesstimates”, perhaps informed by previous 
experience with other systems or general knowledge 
of the clients that the storage system is expected to 
support. Once the storage system is operational, 
workload characteristics can be observed. However, 
such observations are not a panacea: they may be 
expensive to obtain and use, they do not solve the 
initial configuration problems, and they are of no use 
in addressing “what if” questions. For example, a 
DBA may be considering a possible physical design 
change such as the creation of an index. If created, 
this index would affect the I/O workload experienced 
by the underlying storage system. Direct observation 
of the current storage system workload does not by 
itself provide any guidance as to what the storage 
workload would look like if the index were added. 
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In this paper, we attempt to close the information gap 
between the database tier and the storage tier by 
address-ing the problem of predicting the storage 
workload that will be generated by a database 
management system. Specifically, we show how to 
translate a database workload description, together 
with a database physical design, into a 
characterization of the storage workload that will 
result. 

 

Figure 1: End-to-End Physical Design using Existing 
Design Advisers 

By estimating database systems’ storage workloads, 
we can provide storage administrators with information 
that they can use to make informed planning, design, 
and configuration decisions. In doing so, we enable 
end-to-end solutions to physical design and storage 
configuration problems. One example of this is shown 
in Figure 1, which illustrates how existing database 
physical design tools and storage configuration tools 
could be combined to determine both a database 
physical design and an appropriate storage 
configuration for a given database workload, while 
preserving the administrative autonomy of the 
database and storage tiers. With storage workload 
estimation, both the DBA and SA have sufficient 
information to address their part of the end-to-end 
design and configuration problem. 

2. PROBLEM FORMULATION 

In this section, we will define the problem of estimating 
storage workload characteristics given a specification 
of the database workload. To formulate this problem 
more precisely, we begin by defining what we mean by 
“database workload” and “storage workload”. 

2.1 Database Workload Model 

Existing relational database design tools typically 
expect the database workload to be defined as a set of 
SQL statements (queries and updates) along with 
some indication of the relative frequency of occurrence 

of each statement [2, 20]. We use a similar 
characterization of the database workload for our 
storage workload estimation problem, so that a single 
workload description can be used for both tasks. 

Specifically, we assume that the workload is 
characterized by a fixed set Q of SQL statements 
defined over a known database schema. We refer to 
each such statement as a query type. Each query type 
Qi has an associated weight fi which represents its 
prevalence in the workload. The proportion of queries 
of type Qi in the workload is given by 

 

This kind of database workload characterization 
describes the mix of queries and updates in the 
database workload. This is sufficient for tasks such 
as index selection, where the goal is to choose a set 
of indexes that will provide superior performance 
relative to the performance achievable using other 
sets of indexes. However, we would like our storage 
workload estimates to be useful for a variety of 
storage management tasks, including those that 
require information about absolute frequency of 
occurrence of the various queries. An example of 
such a task is capacity planning. To enable this, we 
also require that the database workload description 
include a specification of a target operating point for 
the database system. We use two parameters to 
characterize an operating point. The first is the total 
query throughput, denoted by _. The second is the 
query multiprogramming level, k, which describes the 
expected number of concurrently executing queries 
at any given time. 

Finally, since our storage workload estimator relies 
on the database system’s query optimizer, we 
require that optimizer be configured to behave as it 
would at the target operating point. In particular, 
database statistics should be available so that the 
query optimizer will choose appropriate query 
execution plans. Again, existing database 
administration tools have similar requirements for the 
availability of statistics, and some database systems 
support the definition of hypothetical database 
instances to support costbased “what if” analyses 
without the need to populate the hypothetical 
instance [5]. We assume that a database physical 
design has been selected, perhaps through the use 
of a physical design advisor [2, 20], and that the 
physical design is known to the query optimizer. We 
use D to represent the set of physical database 
objects: tables, indexes, materialized views and so 
on. Figure 2 summarizes the database workload 
parameters. 

2.2  I/O Workload Model 

One way to characterize I/O workloads is to use a 
trace of I/O events, or a set of traces. Although 
traces are a very detailed and expressive way to 



 

 

Vikrant Chauhan 

 

w
w

w
.i

gn
it

e
d

.i
n

 

3 

 

 Journal of Advances in Science and Technology                     
Vol. IV, No. VII, November-2012, ISSN 2230-9659 
 

describe storage workloads, they have some 
disadvantages. They are large and expensive to store 
and manipulate. Traces of database I/O workloads are 
also expensive to collect, as collection requires 
populat-ing the database and applying a realistic load. 
Trace-based workload descriptions cannot be used as 
input to analytical models of storage system behavior. 

 

Figure 2: Database Workload Model Parameters 

Finally, traces tend to be specific to a particular 
storage configuration, and difficult to generalize. It is 
prohibitively expensive to collect traces from multiple 
candidate storage configurations. Instead, we adopt a 
more abstract I/O workload model called the Rome 
model [18]. The Rome model is the unifying “glue” for 
a collection of storage management tools that support 
performance modeling, capacity planning, storage 
system design and configuration, and other tasks [3, 4, 
16]. The Rome model is not specifically designed to 
model the I/O workloads generated by database 
management systems. It is a general purpose model 
intended to model storage workloads generated by 
any kind of storage client. Since shared, consolidated 
storage systems must accommodate workloads from a 
variety of clients, including databases, we believe that 
it is important to target a generic workload model. 
Doing so allows a storage administrator to aggregate 
workload descriptions from multiple storage 
applications. By targeting the Rome model in 
particular, we are also able to leverage existing Rome-
based workload analysis and storage management 
tools. 

The Rome model views the storage system abstractly, 
as a set of stores. A store can be thought of as a 
virtual block storage device, disjoint from other stores, 
to which block read and write requests can be 
directed. The I/O workload directed to a store is 
represented by one or more concurrent streams. A 
stream consists of bursts of I/O request activity of 
duration ton interleaved with idle periods of duration 

 during which no requests occur. During each 
on-burst, read requests to the underlying store occur 

at rate  and write requests occur at rate . 

Each I/O request has a starting position (within the 
underlying store) and a size, or length, B. The starting 
position of each request is determined by a run length 
parameter L. Successive requests in a stream start 
where the previous request left off, until the total 
number of requests in the run reaches L. The next 

request then starts a new run, with a randomly chosen 
starting position. Thus, L = 1 models a random I/O 
request pattern, while larger values of L model 
sequentiality. Figure 3 summarizes the parameters 
associated with a Rome request stream. Together, 
these parameters describe the request stream 
properties that are important to the underlying storage 
modeling and management tools: request rates, 
read/write mix, burstiness, request size, and 
sequentiality. 

In addition to these per-stream properties, Rome also 
describes burst correlations, which model the amount 
of temporal overlap among the bursts of different 
streams. Given a set S of streams, Rome defines an 
|S|×|S| overlap matrix C. Entry C[i, j] in the overlap 
matrix describes the percentage of stream i’s burst 
period during which stream j is also active. 

 

Figure 3: I/O Request Stream Parameters in Rome 

Note that, as defined by the Rome model, the overlap 
matrix need not be symmetric. For example, consider 
two streams Si and Sj , with ton [i] = 100 and ton [j] = 
10, for which Sj ’s bursts are completely contained 
within Si’s bursts. This will be described by C[i, j] = 
10% and C[j, i] = 100%. 

3. WORKLOAD ESTIMATION 

Figure 4 gives a high-level outline of our method of 
estimating a Rome I/O workload model. As described 
in Section 2.3, the output of this method is one set of 
Rome I/O model parameter values (as shown in 
Table 3) for each physical database object Dj 2 D. 
The model parameters for Dj describe the I/O 
workload that the DBMS is expected to apply to the 
stored representation of that object. The method 
shown in Figure 4 consists of three phases. First, we 
generate an I/O request sequence corresponding to 
each query type in the database workload (Figure 4 
lines 1-4). Second, we merge those individual 
sequences into a single I/O request trace, which we 
call the representative I/O trace for the given 
database workload and operating point (line 5). 
Finally, we project each physical object’s requests 
from the representative trace and fit the Rome stream 
parameters to the projected trace (lines 6-9). In the 
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remainder of this section, we describe each of these 
phases in more detail. 

3.1 Estimating Query Request Sequences 

An I/O request sequence is an ordered list of records, 
each of which describes a single I/O operation. 
Specifically, each record consists of the following 
fields: physical object identifier, starting offset within 
the physical object, request length, and request type 
(read or write). Note that, in Figure 4, we have 
distinguished request sequences from request traces. 
A request trace differs from a request sequence in that 
the former includes timing information for each I/O 
operation, while the latter does not. 

The first phase of the storage workload estimation 
process is to predict a separate I/O request sequence 
for each type of query in the database workload. 
These request sequences describe the I/O behavior of 
a single query running in isolation. Figure 5 
summarizes our approach. To obtain these 
sequences, we perform a data-free simulation of the 
control flow of each query’s execution plan. During the 
data-free simulation of a plan, the plan operators 
generate I/O records describing any I/O operations 
that they would have generated during a normal plan 
execution. 

However, they do not actually generate the I/O 
operations. These I/O records are concatenated to 
form the I/O request sequence for the query. 

When a query plan is actually executed by the 
database system, its control flow depends on the data 
that is flowing through the plan. During our data-free 
simulation, we neither retrieve the data nor flow the 
data through the plan. The simulation relies instead on 
the cardinality estimates produced by the query 
optimizer to approximate the control flow that would 
have occurred during an actual execution of the plan. 
For example, for a tuple-oriented nested loop join, we 
use the optimizer’s estimate of the cardinalities of the 
inner and outer relations and its estimate of the join 
selectivity to estimate the number of times that the join 
operator’s left and right children in the plan will be 
asked to produce data. The simulation also relies on 
some operator-specific optimizer assumptions. For 
example, a sort operation is assumed to create initial 
runs that are twice the size of the working memory 
available for the sort. 

 

Figure 5: Generating I/O Request Sequences 

By performing the data-free simulations, we hope to 
capture several important properties of the I/O 
workload that will be generated by queries of each 
type. First, the resulting I/O sequences will contain 
the correct numbers of I/O requests for each physical 
database object used by the query, up to the 
accuracy of the query optimizer’s cardinality 
estimates and our own simplifying assumptions in 
the simulation. 

Second, the I/O request sequences will distinguish 
sequential and random I/O, based on the type of 
operator that is generating the requests, as well as 
information from the database catalogue. For 
example, a table scan of a relation will generate 
sequential requests, while an index scan of the same 
relation using an uncorrelated secondary index will 
generate random requests. Finally, the sequence will 
capture the interleaving of requests for the various 
physical database objects used by the query plan. 
For example, the simulation understands that a hash 
join will first retrieve the entire build input and then 
retrieve the entire probe input, resulting to non-
interleaved access to the physical objects that 
provide the build and probe inputs. Conversely, a 
nested loop join will result in interleaved accesses to 
the inner and outer inputs. 
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Figure 6: Data-Free Simulation of Postgres Plan 
Operators. In the diagram, operators are annotated 
with the names of state variables maintained by the 
simulation. Operator inputs and outputs are annotated 
with the names of Postgres optimizer statistics and 
configuration parameters that are used by the 
simulator. 

Our implementation of data-free simulation is 
embodied in a modified version of Postgres. In our 
version of Postgres, there are 18 different operators 
that may appear in execution plans. Our plan simulator 
handles most aspects of these operator types. One 
limitation of our current implementation is that certain 
kinds of SQL subqueries (those that result in query-
valued qualifiers in plan nodes) are not handled. This 
is a restriction of our current prototype, not a 
fundamental restriction. We do not have space here to 
present the entire simulator. However, Figure 6 
illustrates the simulation for three of the Postgres 
operators: sequential scan, index scan, and nested 
loop join. 

Note that data-free simulation of a query plan is 
generally much faster than the actual execution of the 
plan. This is because the simulation does not retrieve 
any stored data, does not flow these data through the 
plan operators, and does not generate any 
intermediate or final query results. More information 
about the cost of data-free simulation is given in 
Section 4.4. 

3.2 Generating the Representative Trace 

The I/O request sequences generated in the first 
phase capture the I/O workload characteristics of a 
single workload query running in isolation. In the 

second phase, we generate a representative I/O trace 
that describes the aggregate storage workload of the 
entire database workload. The generation of the 
representative I/O trace adds three kinds of 
information to the individual query request sequences. 
First, since representative I/O trace describes the 
aggregate storage workload generated by the 
database system, it reflects the mixture and frequency 
of the various types of queries that make up the 
database workload. Second, it accounts for the effect 
of the database system’s buffer cache on the 
aggregate I/O stream. Finally, unlike the perquery 
request sequences, the representative trace 
incorporates timing information in the form of an 
arrival timestamp for each I/O request. These 
timestamps reflect the I/O request throughput that will 
be required to support the database system at the 
specified operating point. 

 

Figure 7: Generating the Representative I/O Trace 

Figure 7 summarizes the process of generating the 
representative I/O trace. We use a simple 
probabilistic operational model of the database 
system to generate a merged I/O sequence from the 
per-query I/O sequences obtained in the first phase. 
The database system is assumed to have a fixed 
query multiprogramming level k at the target 
operating point. k is specified as a workload 
parameter (see Figure 2). To generate a merged I/O 
sequence, k query types are selected at random, with 
query type i selected with probability proportional to fi. 
The I/O sequences for the selected query types are 
then round-robin merged to produce a single request 
sequence. When one of the per-query sequences is 
exhausted during the merger, another query type is 
selected and its I/O sequence replaces the exhausted 
one. This generative process continues until a 
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specified number of per-query I/O sequences have 
been merged. 

As the merged request sequence is formed, we apply 
it to a DBMS-specific buffer cache model. To model 
the buffer cache, we are currently using a simulation of 
the 2Q cache replacement algorithm [7] that is used by 
Postgres. This simulation is parameterized by the 
buffer cache size. The effect of the simulation is to 
remove from the request sequence any I/O requests 
that hit the (simulated) buffer cache. Finally, we 
associate timing information with each remaining I/O 
request in the sequence to produce the representative 
I/O trace. To do this, we use the query throughput _ 
that is supplied as a parameter to the workload 
estimation process. We first translate query throughput 
to I/O throughput by multiplying query throughput by 
the expected number of I/O requests per query: 

 

where Ni is the cache-corrected length of I/O request 
sequence (from phase 1) for query type Qi. The jth 
request in the representative I/O trace is assigned an 
arrival time of j/_io. This reflects the requirement that 
the necessary query throughput at the target operating 
point be satisfied by a storage system capable of 
handling I/O requests at this rate. 

4. RELATED WORK 

In the database tier, a variety of tools are available to 
address various aspects of the database physical 
design problem, such as choosing indexes and 
materialized views [2, 20] and partitioning relations [2, 
11]. These tools typically expect as input a database 
workload description similar to the one that is expected 
by our estimation technique. These tools are 
complementary to the workload estimation technique 
described in this paper. Agrawal, Chaudhuri, Das, and 
Narasayya addressed the problem of automating the 
layout of relational databases on a given set of storage 
devices [1]. Internally, their solution uses an access 
graph to characterize the I/O resulting from a given 
database workload. The graph describes estimated 
number of I/Os to each DB object and edge weights 
that characterize co-access (similar to our overlap 
matrix C in our Rome-based descriptions). This is a 
less expressive model than the one we have used. For 
example, it makes no distinction between sequential 
and random I/O to an object and no distinction 
between reads and writes. More significantly, that work 
views storage layout as a a database administration 
problem. In contrast, our goal is to generate accurate 
database workload characterization to enable storage 
administrators to make informed decisions about 
layout and other related problems. Wasserman, 
Martin, Skillcorn and Rizvi [17] describe a workload 
characterization approach for database systems. 

They characterize according to several resource-
related attributes, such as CPU consumption and 
sequential and random I/O rates, as well as other 
properties such as join degree. Our workload 
characterizations are more detailed, and they do not 
contain DBMS-specific attributes, such as join degree, 
that are not meaningful to the storage tier. 

Narayanan, Thereska and Ailamaki describe a 
database resource advisor for predicting transaction 
response times and throughput based on end-to-end 
tracing [10]. Their technique relies on instrumentation 
and tracing of live database systems. Like the 
technique described here, their approach seeks to 
identify a configuration-independent workload 
description with which to make model-based 
performance predictions. This allows the advisor to 
speculate about the impact of hypothetical changes in 
the underlying resources. However, because this 
approach relies on tracing a running database 
system, it has no means of speculating about the 
effects on the resource workloads of hypothetical 
changes in the database system workload or 
physical design. Our approach does accommodate 
such analyses. There are several tools that address 
the automation of storage system design and 
management, though these are somewhat less 
mature than production database physical design 
advisors. Disk Array Designer [4] addresses the 
problem of storage system configuration: which 
arrays to define, how to configure each array, and 
how to lay out application data to the arrays. 
Hippodrome [3] uses these design tools to automate 
the management of a storage system as the 
workloads change, using a measure, analyze, 
reconfigure cycle. Similar design and automation 
tools also exists for designing storage area networks 
[16] (SANs) that connect storage devices to servers, 
and for designing data reliability solutions (e.g., 
backups, mirrors, snapshots, etc) and configurations 
[8]. All of these storage layer tools require storage 
workload characterizations, and can directly take 
advantage of our storage workload estimator. 

5. CONCLUSION 

We have presented a technique for estimating the 
storage system workloads that are generated by 
database management systems. Our technique 
generates storage workload models in a form that is 
easily used by storage administration tools, such as 
configuration advisors. We have demonstrated the 
feasibility of this approach by implementing it in 
Postgres. Our experimental results suggest that the 
workload estimations produced by our technique are 
sufficiently accurate to be useful for predicting the 
performance of alternative storage configurations. 
We expect the estimates to be of similar use for 
other related tasks, such as capacity planning. This 
is the first attempt that we are aware of to design 
tools intended to improve the flow of information from 
the database tier to the storage tier. 
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