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Abstract – We propose a new number representation and arithmetic for the elements of the ring of integers 
modulo p. The so- called Polynomial Modular Number System (PMNS) allows for fast polynomial arithmetic 
and easy parallelization. The most important contribution of this paper is the fundamental theorem of a 
Modular Number System, which provides a bound for the coefficients of the polynomials used to rep-

resent the set  However, we also propose a complete set of algorithms to perform the arithmetic 
operations over a PMNS, which make this system of practical interest for people concerned about 
efficient implementation of modular arithmetic. 

---------------------------♦----------------------------- 
 

1. INTRODUCTION 

Efficient implementation of modular arithmetic is an 
important prerequisite in today's public-key cryptogra-
phy [10]. The celebrated RSA algorithm [13], and the 
cryp- tosystems based on the discrete logarithm 
problem, such as Diffie-Hellman key exchange [6], 
need fast arithmetic modulo integers of size 1024 to 
roughly 15000 bits. For the same level of security, 
elliptic curves defined over prime fields, require 
operations modulo prime numbers whose size range 
approximately from 160 to 500 bits [8]. 

Classic implementations use multiprecision arithmetic, 
where long integers are represented in a predefined 
high- radix (usually a power of two depending on the 
word size of the targeted architecture). Arithmetic 
operations, namely modular reduction and 
multiplication, are performed using efficient algorithms, 
such as as Montgomery [12], or Barrett [3]. (For more 
details, see [10], chapter 14.) These general 
algorithms do not require the divisor, also called 
modulus, to be of special form. When this is the case, 
however, modular multiplication and reduction can be 
accelerated considerably. Mersenne numbers, of the 
form 2

m
 — 1, are the most common examples. 

Pseudo-Mersenne numbers [5], generalized Mersenne 
numbers [14], and their extension [4] are other 
examples of numbers allowing fast modular arithmetic. 

In a recent paper [2], we have defined the so-called 
Modular Number Systems (MNS) and Adapted 
Modular Number Systems (AMNS) to speed up the 
arithmetic operations for moduli which do not belong to 
any of the previous classes. In this paper, we propose 
a new representation, and the corresponding 

arithmetic operations for the elements of the ring of 
integers modulo p. (The integer p does not have to be 
a prime, although it is very likely to be prime for 
practical cryptographic applications.) We define the 

Polynomial Modular Number System (PMNS), over 
which integers are represented as polynomials. 
Compared to the classical (binary) representation, 
polynomial arithmetic offers the advantages of no 
carry propagation and easiest paral- lelization. The 
main contribution of this paper is the fundamental 
theorem of a MNS, which provides a bound for the 
coefficients of the polynomials used to represent the 

elements of This theorem is presented in Section 
3. It uses results from lattice reduction theory [9, 11]. 
The second half of the paper focuses on the 
arithmetic operations; in Section 4, we propose 
algorithms for the basic operations - addition, 
multiplication, conversions - which all require a final 
step, called coefficient reduction ,that we present in 
details in Section 5. A numerical example is provided 
in Section 6. 

2. MODULAR NUMBER SYSTEMS 

In classic positional number systems, every non-
negative integer, x, is uniquely represented in radix r 
as 

 

If xn-1 =0, x is said to be a n-digit radix-r number. 

In most public-key cryptographic applications, compu-
tations have to be done over finite rings or fields. In 
prime fields gf (p), we deal with representatives of 
equivalence classes modulo p (for simplicity we 
generally use the set of positive integers {0,1,...,p — 
1}), and the arithmetic operations - addition and 
multiplication - are performed modulo p. In order to 
represent the set of integers modulo p, we define a 
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Modular number system, by extending the Definition 
(1) of positional number systems. 

Definition 1 (MNS) A Modular Number System, B, is a 

quadruple  such that every positive 

integers,  satisfy 

 

The vector (x0,..., xn-1)B denotes a representation of x 

in  

In the rest of the paper, we shall omit the subscript (.)B 

when it is clear from the context. We shall represent 
the integer, a, either as the vector, a, or the 
polynomial, A, without distinction. We shall use ai to 
represent both for the ith element of a, and the ith 
coefficient of A. (Note that we use a left-to-right 
notation; i.e., a0, the left-most coefficient of A, is the 
constant term.) Hence, depending on the context, we 

shall use  to refer to the norm of the vector, 
or the corresponding polynomial. We shall also use the 
notation ai to refer to the ith vector within a set of 
vectors or a matrix. 

Example 1 Let us consider a MNS defined with p = 

 Over this system, we 

represent the elements of  as polynomials in of 
degree at most 2, with coefficients in { — 1,0,1} (cf. 
table 1). 

 

Table 1. The elements of  in the MNS defined as 
B = MNS (17, 3, 7, 2) 

In example 1, we remark that the number of 
polynomials of degree 2, with coefficients in {—1,0,1} 
is equal to 3

3
 = 27. Since we only have to represent 17 

values, the system is clearly redundant. For example, 
we 

have =

The level of 
redundancy depends on the parameters of the MNS. 
Note yet that, in this paper, we shall take advantage of 
the redundancy only by considering different 
representations of zero. 

In a MNS, every integer, is thus represented 

as a polynomial in But; what do we know about the 
coefficients of those polynomials? Are they bounded 
by some value which depends on the parameters of 
the MNS? In other words, given the integers p and n, 
are we able we determine and construct a MNS? We 
answer these questions in the next section. We prove 
the fundamental theorem of a MNS, using results from 
lattice reduction theory, and we introduce the concept 
of Polynomial Modular Number System (PMNS). 

3. POLYNOMIAL MODULAR NUMBER 
SYSTEMS 

In this section, we consider special cases of modular 

number systems, where is a root (modulo p) of a 
given polynomial E. In the following fundamental 
theorem of a MNS, we prove that if is greater than a 
certain bound, then it is always possible to define a 
valid MNS. Roughly speaking, Theorem 1 says that 

there exists a MNS,  where one 
can represent every integer less than p, as a 
polynomial of degree at most n — 1, with coefficients 
all less than C x p

1/n
, where C is a small constant. 

Theorem 1 (Fundamental theorem of a MNS) Let 
us define p,n > 1, and a polynomial 

  with  such that 

 (mod p), and E irre ducible in  If  

 

then, the parameters define a modular 

number system,  Sketch of 
proof: (A complete, detailed, proof can be found in 
[1].) 

The proof is based on the theory of lattice reduction 

[9, 11]. A lattice  is a discrete sub-group of  or 
equiv- alently the set of all the integral combinations 

of  linearly independent vectors over  

 

The matrix A = (a1,..., ad) is called a basis of It is 

known that, every vector over  can be reduced, 
modulo the lattice, within the fundamental domain 

of given by  

 

In order to prove Theorem 1, we first define the 

lattice,  of all the multiples of p in 

B; or equivalently, the set of vector of  defined by 
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From Minkowski's theorem [9, 7], and because we 

have  we prove that there exists a vector 

 such that  We then define a 

second lattice, of dimension n, with 
B=(b1,..., bn), 

such that 

 

To conclude the proof, we simply remark that every 

integer,  can be first associated with the 

vector a = (a, 0,..., 0), and reduced modulo  to a 

vector  which belongs to the fundamental domain 

 Since  can be overlapped by spheres of 

radius  and centers the vertices of 

 and because all the points of a lattice are 
equivalent, we conclude that 

 

Definition 2 (PMNS) A modular number 

system  which satisfies the 
conditions of Theorem 1 is called a Polynomial 
Modular Number System (PMNS). We shall denote 

 In practice, we shall define 

the polynomial E with  as small as possible. 

Example 2 We define the PMNS with 

 We easily 

check that = 13 is a root of E in  and E is 

irreducible in  We represent the elements of  
as polynomials of degree at most 2, with coefficients in 
{ — 1,0,1}. 

4. CONCLUSIONS 

In this paper, we have proposed a new representation 
for the elements of Zp, the ring of integers modulo p, 
called Polynomial Modular Number Systems. In this 
system, integers are represented as polynomials in 7, 
of degree less than n, with coefficients bounded by (|a| 
+ |ft|)p

1/n
, where a, ft are very small integers. Since p

1/n
 

is a minimum value, 

 

Table 2. The iterations performed by the CTCR 
Algorithm 3 

only a few extra bits are required for each coefficient. 
Compared to the classic multiprecision 
representation, the polynomial nature of PMNS 
allows for no-carry propagation, and efficient 
polynomials arithmetic. The algorithms presented in 
this paper for the arithmetic operations must be seen 
as a first step in doing the arithmetic over this new 
representation. Many improvements are still to 
come... 
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