

Vivek Kumar Shukla1*, Dr. Qaim Mehdi Rizbi2

w
w

w
.i
g

n
it

e
d

.i
n

156

 Journal of Advances in Science and Technology
Vol. 20, Issue No. 2, September-2023, ISSN 2230-9659

An Analysis the Energy Consumption of
Dynamic Task Offloading and Task Execution in

MCC

Vivek Kumar Shukla1*, Dr. Qaim Mehdi Rizbi2

1 Research Scholar, Shri Krishna University, Chhatarpur, Madhya Pradesh, India

Email: vivekshukla.it@gmail.com

2 Associate Professor, Department of Computer Science & Application, Shri Krishna University, Chhatarpur,
Madhya Pradesh, India

Abstract- Cloud computing is a group of distributed computing resources that may run any application.
MCC is the result of merging the cloud environment with mobile devices. computational offloading is
carried out on the cloud in order to save the processing capacity of handheld devices. There will be a rise
in computing as the number of sensors used increases, necessitating greater data analysis. Another
problem with mobile environments is the power drain on batteries. One solution is to move the work to a
remote location where it can be more efficiently executed. In this off-site setting, you'll find powerful
cloud servers with plenty of processing capacity. One way that dense mobile apps were able to move
their work to the cloud is through computational offload. why it's important to provide a proper
explanation of the time constraint in wireless & distant environments, and how reaction time affects
offloading for mobile devices & remote servers.

Keywords- Mobile Cloud Computing, Cloud Computing, Offloading, Energy aware, wireless

- X -

INTRODUCTION

The benefits of wireless connections have made mobile
devices more appealing for on-demand application
computing. However, mobile devices' limited battery
life, processing power, & storage space severely limit
their performance. The integration of cloud computing
into the realm of networks allows for the efficient
management of these delicate aspects of mobile
devices. When a cloud environment is integrated with
mobile devices, it results in MCC. The cloud is a
collection of enormous computer resources that can
manage any application. According to Chang et al.
(2013), Chun et al. (2011), and Yang et al. (2012),
MCC is one of the cutting-edge areas in computational
research. For this reason, computational offload is
carried out on the cloud so that mobile devices can
conserve their processing power. One way that dense
mobile apps were able to move their work to the cloud
is through computational offload. Several high-tech
sensors, such as global positioning systems (GPS),
light, pressure, accelerometer, and magnetometer, are
integrated into modern mobile devices. There will be a
rise in computing as the number of sensors used
increases, necessitating greater data analysis. Another
problem with mobile environments is the power drain
on batteries. One solution is to move the work to a
remote location where it can be more efficiently
executed. In this off-site setting, you'll find powerful
cloud servers with plenty of processing capacity.

Recent innovations in mobile computing have
prompted programmers to consider cloud-based,
adaptable application development. For this reason,
Kumar et al. (2010) suggest a method for offloading
tasks. The authors proposed a method to reduce
mobile devices' power consumption. The cloud will
be used to offload jobs that require a lot of compute.
Consequently, local conditions will see a decrease
in battery use. There is a limit to how much
calculation the mobile devices can do.
Computational offloading for mobile cloud
computing has been suggested by Rong (2003) and
Li et al. (2001). The software running on mobile
devices is moved to a server in the cloud. So, the
total amount of time needed to finish the task will
decrease. Offloading is an NP-completeness
problem in MCC since it involves job division.
Middleware design for handling dynamic task
offloading was developed by Shumao et al. (2007)
as a solution to the partitioning issue. A unique
approach for offloading duties during runtime is
incorporated into this middle architecture. As an
example, Gu et al. (2003) suggested an inference
engine for offloading that is based on fuzzy control.
Based on work by Zhang et al. (2010), the
algorithm's primary goal is to lessen the financial
burden of networking wireless devices to distant
servers. In order to run on adjacent remote servers,
the algorithm divides the program and uploads it.

Vivek Kumar Shukla1*, Dr. Qaim Mehdi Rizbi2

w
w

w
.i
g

n
it

e
d

.i
n

157

 An Analysis the Energy Consumption of Dynamic Task Offloading and Task Execution in MCC

While an adequate description of the time limitation is
required in both wireless and distant environments,
current algorithms have failed to address the
importance of reaction time in the offloading process
for mobile devices & remote servers.

MCC ARCHITECTURE'S PROPOSED WORK-
DYNAMIC TASK OFFLOADING

The architectural view of MCC's dynamic task
offloading (DTO) is provided in Figure 1. The three
parts of this ecosystem are the wireless medium, the
cloud, & mobile devices. A dynamic task offloading
issue, which is a critical concern in mobile
environments, is the focus of this study.

Figure 1. DTO in MCC Architecture

• Task Manager: Collects mobile device tasks.
A combination of input data and calculation is
used to manage the tasks & produce the
output. The mobile device needs more power,
processing power, and time to complete the
tasks.

• Connection Manager: This component opens
the wireless connection between the local &
remote environments. It is important that the
local client & remote establish a dependable
connection.

• Task Scheduler: One way that cloud
computing handles managing the usage of
virtual machine instances is through task
scheduling.

• Task Queue: Here are the tasks that have
been transferred from the mobile environment
to the cloud and are ready to be executed.
From the queue, jobs are obtained and
assigned to the servers that are available. The
tasks are simply discarded if the queue is full.

• Dynamic Task i/o: One of the biggest
problems with MCC is the execution of tasks in
parallel. There is a wide variety of i/o
workloads across jobs, each with its own
unique needs for accessing data services..

• Task migration handler: This component
enables the transfer of tasks between the local
and remote environments.

PROPOSED ARCHITECTURE FEATURES

Offloading tasks dynamically: The framework uses
task migration to offload tasks depending on whether
the remote environment is suitable. A decision-making
engine is a part of the architecture that, depending on
the needs of the user, determines whether to offload
the work to a mobile environment or the cloud.

Energy calculation: Due to the restricted battery
power of mobile environments, energy management is
of the utmost importance. To determine how much
power is required by mobile devices, the cloud, and
wireless networks, the suggested design incorporates
an energy model into the mobile ecosystem.

Collective task execution: MCC was tasked with
carrying out the entire job execution, affording to
Zhang et al. (2013). On the other hand, according to
the suggested design, the given job is split into 'n'
jobs, & each task has its own decision variable that
determines where to run.

FORMULATING THE PROBLEM

Imagine that there are n offloadable tasks in job T,
denoted as T = {t1, t2, t3…tn}. Different amounts of
processing power are required for different types of
tasks (ti). The main problem with task offloading is
deciding which tasks should run on the mobile
device and which ones should be sent to a remote
server for processing. Job T was divided into n
tasks, as indicated in Figure 2. Think of it this way:
task tn takes the output of t1 as input, and task t1
can't run without the output data of tasks t2 through
tn-1.

Figure 2. Data Communication among Subtasks

The process of DTO is introduced to solve the
above issues. Time and energy used to complete
each task are its primary focus. The job attributes
inform the decision-making engine's task offloading
decision.

DYNAMICS OF ENERGY-AWARE TASK
OFFLOADING

An integral part of the decision-making engine in the
suggested design is a dynamic task offloading
algorithm, which determines if and where to offload

Vivek Kumar Shukla1*, Dr. Qaim Mehdi Rizbi2

w
w

w
.i
g

n
it

e
d

.i
n

158

 Journal of Advances in Science and Technology
Vol. 20, Issue No. 2, September-2023, ISSN 2230-9659

the work. According to Wen et al. (2012), the decision-
making engine must determine the local environment's
energy consumption before job execution. In the
suggested architecture's network model, which is
based on the network model of Haung et al. (2012), the
network availability during data transmission is
assumed to change with the device's mobility. In Figure
2, we can see that work T is broken down into 'n'
nonhomogeneous tasks before being delivered to the
mobile environment. The symbol δ(t) represents the
workload of every task. Given a decision variable φ(t) =
{0,1}, a value of 0 indicates that the task is offloaded,
while a value of 1 implies that the task proceeds in the
local context.

LOCAL ENVIRONMENT (εlocal)

The ti is the task executing on the local mobile
environment having the computation speed (Clocal),
then the completion time (τlocal) of the task ti is given
as

Founded on the eq. (2.2), the function for energy
consumption εlocal is defined as

Where, Plocal denotes the power consumption of the
mobile environment, τlocal denotes the completion time
of the mobile environment.

REMOTE ENVIRONMENT(εcloud)

The ti is the task offloaded to the remote cloud
environment, the completion time (τcloud) of the task ti
is given as

Based on the eq. (3.4), the function for energy
consumption εcloud is defined as

The variables Id, Tb, δ(ti), and τcloud stand for the
input data that needs to be offloaded, the network's
transmission bandwidth, the burden of task ti, and the
processing speed of the cloud environment,
respectively. Pidle is the power usage when the mobile
environment is not in use.

INPUT DATA TO OFFLOAD

Offloading the task to a remote cloud environment
requires the input data in order for the task to be
executed. Offloading data from the local environment to
the cloud requires a completion time τsend & energy
consumption εsend, which are provided as

Where, Psend represents the power consumption to
offload the data and εnetwork denotes the energy
consumption of the network.

OUTPUT DATA TO THE LOCAL ENVIRONMENT

The local mobile environment should receive the
output data from task ti when its execution in the
remote cloud environment is complete. The
following are the given completion time τand energy
consumption ϵfor the task ti.

This is where the variables Precieve & Od stand for
the power consumption and data output,
respectively, to be acquired by the mobile
environment from the cloud.

WIRELESS NETWORK (εnetwork)

In order to create a connection, the proposed design
takes into account three networks: Wi-Fi, 3G, and
LTE. In the suggested paradigm, the bit rate
determines the amount of energy that needs to be
consumed. The network's energy consumption is
provided as

The network's energy consumption is determined
using the equation (10). When designing a wireless
medium, three factors are taken into account. The
values of ε3g & εlte are set to zero in an MCC
environment that utilizes a WiFi component as a
wireless channel. If it leverages the LTE component
for wireless communication, the remaining values of
εwifi and ε3g are set to 0.

Vivek Kumar Shukla1*, Dr. Qaim Mehdi Rizbi2

w
w

w
.i
g

n
it

e
d

.i
n

159

 An Analysis the Energy Consumption of Dynamic Task Offloading and Task Execution in MCC

DECISION MAKING & COLLECTIVE TASK
EXECUTION

 DECISION MAKING ALGORITHM

The decision-making engine is a crucial offloading
module in the suggested design. Determining whether
to perform in the local environment or outsource the
task is the functionality of the decision-making engine.
Task offloading is described in Algorithm 1, which
mainly uses completion time and energy usage as its
criteria. Task completion in a mobile setting must meet
user expectations. So, it needs to be ready by the time
the user specifies. The user threshold values are
defined by the variables τmin and εmin. In order to
determine how long it will take to do the work, the
algorithm takes the user-specified time into account.
The local variable εlocal will be computed if the time it
takes for the mobile environment to finish is shorter
than the time the user has selected. The model
calculates task 't' in the local mobile environment if it
meets user requirements. In such a case, the model
will transfer the workload to the nearest accessible
server in the cloud.

Algorithm 1: Decision-Making

 COLLECTIVE TASK EXECUTION

In this section, we will look at how the local and remote
environments work together to complete tasks. In
particular, we take into account the scenario depicted
in Figure 2, wherein, depending on the time & energy
consumption compulsory to complete each activity, the
tasks in the scenario are either executed locally or
offloaded to a distant environment. Offloading the jobs
to the distant environment is necessary since they are

believed to have a lengthier completion time, from time
t2 to time tn-1. In this local context, tasks t1 and tn are
running. Equation (11) displays the overall energy
usage of the delegated tasks.

Since t1 and tn are not running in the background like
the other tasks, they are deciding to offload them. This
has an effect on the amount of energy that is
consumed.

Algorithm 2 introduces the technique for executing
communal tasks while taking energy into
consideration. The submitted work T's total energy
usage is computed using this method. When
calculating how much energy is required to complete
offloaded tasks, variables like input/output data and
network utilization play a significant role.

 Algorithm 2: Energy-Aware Method for
Collaborative Task Execution

The mechanism determines the energy consumption
in the local environment if the task runs in the mobile
environment. Ultimately, the sum of the two
environments is used to determine the ε(T).

PERFORMANCE ANALYSIS

Here, we assess and analyze the performance of
the suggested MCC environment architecture for
dynamic task offloading.

SIMULATION SETUP

Android x86 running on AWS Software Development
Kits and Programming Toolkits is used to implement
the planned MCC architecture. On Amazon Elastic
Compute Cloud (EC2), the cloud-side architecture is
deployed. In order to generate EC2 instances, Kosta
et al. (2013) utilized Android x86 AMI. Android

Vivek Kumar Shukla1*, Dr. Qaim Mehdi Rizbi2

w
w

w
.i
g

n
it

e
d

.i
n

160

 Journal of Advances in Science and Technology
Vol. 20, Issue No. 2, September-2023, ISSN 2230-9659

devices with 3G, LTE, & Wi-Fi capabilities are utilized
to implement the mobile side architecture. Instances in
this model span three distinct regions, as indicated in
Table 1, and they are all powered by the Android-x86
(2016) Amazon Elastic Compute Cloud API.

Table 1. Amazon EC2 Service Instances

MEASUREMENT OF COMPLETION TIME

This research aims to show how efficient the suggested
architecture is at executing tasks. As seen in Figure 3,
the time required to complete the work grows
exponentially with the size of the data involved. With
reduced processing power, the local environment sees
a dramatic rise in completion time. When carrying out a
communal work, it is important to take into account
both the immediate and distant surroundings. When
comparing the distant environment to the collaborative
work, the latter takes somewhat longer to complete.
The architecture that has been suggested can run in
both local and distant environments at the same time.
This indicates that certain work tasks are run locally
while others are offloaded according to their weights
when the job is partitioned.

Figure 3. Task Completion Time over Data Size

Assuming that the task's execution varies according to
the quantity of instructions, the suggested architecture
accounts for this possibility. Adding more detailed
instructions to a task causes it to take more time to
complete, as seen in Figure 4. There is a comparison
done between the immediate surroundings, the distant
surroundings, and the group assignment. The time
required to do the group project and the remote
environment are almost same. However, when it
comes to cost constraints, it's better to execute
activities together rather than the whole duties. When
compared to remote and communal environments, the

local environment takes nearly three times longer to
finish. Any kind of task can be completed in less time in
the cloud because of the efficient resources available
there. Consequently, the cloud environment has a
shorter completion time than the remote environment.

Figure 4. Task Completion Time over the
Number of Instructions

The proposed Ternary Decision Making algorithm
(TDM) & existing method are compared in Figure 5,
which is sourced from Lin et al. (2015). The identical
conditions that were used to test the original
algorithm are also used to test this TDM algorithm.
The suggested approach outperforms the TDM in
terms of completion time. This is because the TDM
does not support the proposed model's communal
task execution. Consequently, the suggested model
had a lower computation time compared to the
TDM.

Figure 5. Task Completion Time of Proposed
Method and TDM

ENERGY CONSUPTION OF THE PROPOSED
MODEL

Kumar (2010) found that CPUs in the local area
consume an average of 0.9W of power at 500 MIPS.
With regard to data rate & task instructions, Figures
6 and 7 comparison the task's energy consumption

Vivek Kumar Shukla1*, Dr. Qaim Mehdi Rizbi2

w
w

w
.i
g

n
it

e
d

.i
n

161

 An Analysis the Energy Consumption of Dynamic Task Offloading and Task Execution in MCC

in the local environment with that in the remote
environment, as well as in both settings. The values in
Table 2 are used to test the network's energy usage,
where λ is the data size in kilobytes.

Table 2: Configuration Parameters for Three
Networks' Energy Consumption During Upload &

Download

Figure 6. Energy Consumption Vs Increasing Data
Size

The energy consumption of tasks is illustrated in Figure
7 with respect to the number of instructions, and in
Figure 6 with respect to the rising data size. The
energy savings from the group job execution relative to
both contexts are clearly seen in both figures. Because
it is always changing, the collective task execution uses
less energy. The distant environment takes data as
input and provides data as output to the local
environment. Consequently, energy usage will be
higher in remote areas. When compared to fully
executing tasks in a remote setting, the flexibility of
using a dynamic offloading decision algorithm to
offload tasks during collective task execution is
superior. When compared to a distant environment, the
average energy usage of a group working on a job is
three times lower.

In Figure 8, we can see the energy usage of the
Ternary decision making (TDM) method and the
proposed model. The suggested model has lower
energy consumption than the TDM. The suggested
model carried out the operations in both the local and
remote settings. The local environment's resource
consumption is decreased as a result of work being
offloaded to the remote environment. Consequently,
saving energy is achieved by the execution of tasks in

both local and remote environments in simultaneously.
In the end, the suggested approach uses less power
than the TDM while still supporting simultaneous job
execution.

Figure 7. Energy Consumption Vs the Number of
Instructions

Figure 8. Energy Consumption of Proposed
Model and TDM

CONCLUSION

This article presented a new system design for
MCC's dynamic task offloading that would lower
task energy usage. The program takes into account
the task's energy consumption in three different
environments: the local, the remote, and the
network. In addition, we suggest a collaborative task
execution strategy to reduce the total energy
consumption of the tasks that have been submitted.
In addition, the simulation results demonstrate that
the suggested design is effective for group job
execution in terms of reducing energy consumption
in both the local & remote environments, albeit at
the cost of increased overall completion time.

REFERENCES

1. Ali, M., J. Zain, M.F. Zolkipli and G.
Badshah (2015). Mobile cloud computing &
mobile's battery efficiency approaches: A

Vivek Kumar Shukla1*, Dr. Qaim Mehdi Rizbi2

w
w

w
.i
g

n
it

e
d

.i
n

162

 Journal of Advances in Science and Technology
Vol. 20, Issue No. 2, September-2023, ISSN 2230-9659

Review. Journal of Theoretical and Applied
Information Technology, Vol. 79, No. 1, pp.
153.

2. Boukerche, A., Guan, S., & Grande, R. E. D.
(2019). Sustainable offloading in mobile cloud
computing: algorithmic design and
implementation. ACM Computing Surveys
(CSUR), 52(1), 1-37.

3. Cui, Y., Ma, X., Wang, H., Stojmenovic, I., &
Liu, J. (2013). A survey of energy efficient
wireless transmission and modeling in mobile
cloud computing. Mobile Networks and
Applications, 18(1), 148-155.

4. Mayo, R.N., and P. Ranganathan (2003).
Energy consumption in mobile devices: why
future systems need requirements–aware
energy scale-down. In Proceeding of the
International workshop on Power-Aware
Computer Systems, pp. 26-39.

5. Nagaraju, D. and V. Saritha. Energy-aware
dynamic task offloading and collective task
execution in Mobile Cloud Computing.
Communicated to Journal of Supercomputing.
(Scopus Indexed).

6. Ou, S., K. Yang and J. Zhang (2007). An
effective offloading middleware for pervasive
services on mobile devices. Pervasive and
Mobile Computing, Vol. 3, No. 4, pp. 362-385.

7. Qureshi, S.S., T. Ahmad and K. Rafique
(2011). Mobile cloud computing as future for
mobile applications-implementation methods
and challenging issues. In Cloud Computing
and Intelligence Systems (CCIS), 2011 IEEE
International Conference on, pp. 467-471.

8. Rahman, M., Gao, J., & Tsai, W. T. (2013,
March). Energy saving in mobile cloud
computing. In 2013 IEEE International
Conference on Cloud Engineering (IC2E) (pp.

285-291). IEEE.

9. Saad, S. M., & Nandedkar, S. (2014). Energy
efficient mobile cloud computing. International
Journal of Computer Science and Information
Technologies, 56(5), 1757-1771.

10. Tang, C., Xiao, S., Wei, X., Hao, M., & Chen,
W. (2018, January). Energy Efficient and
Deadline Satisfied Task Scheduling in Mobile
Cloud Computing. In 2018 IEEE International
Conference on Big Data and Smart Computing
(BigComp) (pp. 198-205).IEEE.

11. Wang Z., Pang X., Chen Y., Shao H., Wang
Q., Wu L., Chen H. and Qi H. (2019), “Privacy-
preserving Crowd-sourced Statistical Data
Publishing with an Untrusted Server”, IEEE

Transactions on Mobile Computing, 18(6), pp.
1356-1367, 2019.

12. Wang, K., Yang, K., &Magurawalage, C. S.
(2016). Joint energy minimization and resource
allocation in C-RAN with the mobile cloud.
IEEE Transactions on Cloud Computing, 6(3),
760-770

13. Xie J, Dan L, Yin L, Sun Z, Xiao Y, 2015, ‘An
energy-optimal scheduling for collaborative
execution in mobile cloud computing’, In: 2015
International Conference and Workshop on
Computing and Communication (IEMCON),
IEEE, pp. 1–6.

14. Xiong Y., Huang S., Wu M., She J and Jiang K.
(2019), “A Johnson's-Rule-Based Genetic
Algorithm for Two-Stage-Task Scheduling
Problem in Data-Centers of Cloud Computing”,
IEEE Transactions on Cloud Computing, 7(3),
pp. 597-610, 2019.

15. Xu B, Peng Z, Xiao F, Gates AM, Yu J-P,
2015, ‘Dynamic deployment of virtual
machines in cloud computing using multi-
objective optimization’, Soft Computing, Vol.
19, No.8,pp.2265–2273.

16. Xu X., Dou W., Zhang X and Chen, J.
(2016), “EnReal: An Energy-Aware
Resource Allocation Method for Scientific
Workflow Executions in Cloud
Environment”, IEEE Transactions on Cloud
Computing, 4(2), pp. 166-179, 2016.

Corresponding Author

Vivek Kumar Shukla*

Research Scholar, Shri Krishna University,
Chhatarpur, Madhya Pradesh, India

Email: vivekshukla.it@gmail.com

