
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REVIEW ARTICLE 
 
 
 
 

Study of Political Representations: Diplomatic 
Missions of Early Indian to Britain 

Journal of 
Advances and 

Scholarly 
Researches in 

Allied 
Education 

Vol. 3, Issue 6, 
April-2012, 

ISSN 2230-7540 

 

 

 

 

Journal of Advances in 
Science and Technology                     

Vol. IV, Issue No. VII, 
November-2012, ISSN 

2230-9659 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AN 

INTERNATIONALLY 

INDEXED PEER 

REVIEWED & 

REFEREED JOURNAL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

A STUDY ON IMPLEMENTATION OF IMAGE 
PROCESSING FOR MULTIPLICATION IMAGE 

PROCESSING APPLICATION 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

www.ignited.in 

 



 

 

K. Seetharam 

 

w
w

w
.i

gn
it

e
d

.i
n

 

1 

 

 Journal of Advances in Science and Technology                     
Vol. IV, Issue No. VII, November-2012, ISSN 2230-9659 
 

A Study on Implementation of Image Processing 
for Multiplication Image Processing Application 

 

K. Seetharam 

Research Scholar, CMJ University, Shillong, Meghalaya 

Abstract – Multiplication is the kernel operation used in many image and signal processing applications. 
In this paper, we present the design and (EPGA) implementation of multiplier architectures for use in 
image and signal processing applications. The designs are optimized for speed which is the main 
requirement in these applications. First design involves computation of dense multiplication which is 
used in image processing application. The design has been implemented on Virtex-4 EPGA and the 
performance is evaluated by computing the execution time on EPGA. Implementation results 
demonstrate that it can provide a throughput of 16970 frames per second which is quite adequate for 
most image processing applications. The second design involves multiplication of tri-matrix (three 
matrices) which is used in signal processing application. The proposed design for the multiplication of 
three matrices has been implemented on Spartan-3 and Virtex-II Pro platform EPGAs respectively. 
Implementation results are presented which demonstrate the suitability of EPGAs for such applications. 

Keywords: EPGA, Implementation, Image Processing, Multiplication, Processing, Application. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

Computation intensive algorithms used in image and 
signal processing, multimedia, telecommunications, 
cryptography, networking and computation domains in 
general were first realized using software running on 
Digital Signal Processors (DSPs) or General Purpose 
Processors (GPPs). Significant speed-up in 
computation time can be achieved by assigning 
complex computation intensive tasks to hardware and 
by exploiting the parallelism in algorithms (Ogrenci, et. 
al., 2003). Recently, (EPGAs) have become a platform 
of choice for hardware realization of computation-
intensive applications (Ogrenci, et. al., 2003. Ebeling, 
et. al., 2004. Goslin, 1997. Isoaho, et. al., 1993. Ye 
and Lewis, 1999. Knapp. Ma, 2003. Otto and Pavel, 
2002. Batina, et. al., 2003. Johnson, et. al., 2002. 
Compton and Hauck, 2002. Tessier and Burleson, 
2001. Todman, et. al., 2005. Especially, when the 
design at hand requires very high performance, 
designers can benefit from high density and high 
performance EPGAs instead of costly multicore Digital 
Signal Processing (DSP) systems (Ogrenci, et. al., 
2003). EPGAs enable a high degree of parallelism and 
can achieve orders of magnitude speedup over GPPs 
(Ma, 2003). This is as a result of the increasing 
embedded resources on EPGA. EPGA have the 
benefits of the hardware speed and the software 
flexibility; also they have a price/performance ratio 
much more favorable than Application Specific 
Integrated Circuits (ASICs). Since the major resources 
for implementing computation-intensive algorithms are 

embedded on EPGA, latency associated with device 
communication has been eliminated. However, these 
embedded resources are limited hence it is important 
to use these resources optimally. The last decade 
has seen ever increasing application areas for 
EPGAs. Modern EPGAs currently accommodate 
more than ten million gates with clock rates 
approaching 550 MHz (Todman, et. al., 2005). 
Example application areas include single chip 
replacements for old multichip technology designs, 
DSP, image processing, multimedia applications, 
high-speed communications and networking 
equipment such as routers and switches, the 
implementation of bus protocols such as Peripheral 
Component Interconnect (PCI), microprocessor glue 
logic, coprocessors and controllers. Most of the 
computation intensive algorithms such as those used 
in signal, image and video processing, numerical 
analysis, computer graphics and vision involve matrix 
operation as the kernel operation. In this paper, 
different architectures of matrix multiplication for use 
in image and signal processing applications are 
considered for hardware realization using EPGA. 

REVIEW OF LITERATURE 

Multiplication is a computationally intensive problem, 
especially the design and efficient implementation on 
an EPGA where resources are very limited, has been 
more demanding. EPGA based designs are usually 
evaluated using three performance metrics: speed 
(latency), area, and power (energy). Fixed point 



 

 

K. Seetharam 

w
w

w
.i

g
n

it
e

d
.i
n

 

2 

 

 A Study on Implementation of Image Processing for Multiplication Image Processing Application 

implementations in EPGA are fast and have minimal 
power consumption. Additionally, a fixed point matrix 
multiplier unit often requires less silicon real estate in 
an EPGA or ASIC than its floating-point counterpart. 
The limitation of fixed point number is that very large 
and very small numbers cannot be represented and 
the range is limited to bit-width of the number. There 
has been extensive previous work in the area of 
designing an EPGA based system for the computation. 
The authors of used multiplication as the benchmark to 
compare the performance of EPGAs, DSPs and 
embedded processors. The results show that the 
EPGAs can multiply two matrices with both lower 
latency and lower energy consumption than the other 
two types of devices. This makes EPGA ideal choice 
for matrix multiplication in signal processing 
applications. 

EPGA Overview 

Programmable devices, such as programmable logic 
arrays (PLAs), have been available since 1970s. 
However, for a number of years, their use was quite 
limited, mainly due to technological reasons. In the 
early 1980s, programmable array logic (PALs) devices 
started to be used as glue-logic parts but suffered from 
power consumption problems. The extension of the 
gate array technique to post manufacturing 
customization, based on the idea of using arrays of 
custom logic blocks (LBs) that are surrounded by a 
perimeter of input/output (I/O) blocks, all of which 
could be assembled arbitrarily (Rodriguez-Andina, et. 
al., 2007, Pellerin and Thibault, 2005) gave rise to the 
EPGA concept, which was introduced by Xilinx’ 
cofounder Ross Freeman in 1985. EPGAs are digital 
integrated circuits (ICs) that belong to a family of 
programmable logic devices (PLDs). An EPGA chip 
includes I/O blocks and the core programmable fabric. 
The I/O blocks are located around the periphery of the 
chip, providing programmable I/O connections and 
support for various I/O standards. The core 
programmable fabric consists of programmable logic 
blocks also called configurable logic blocks (CLBs) 
and programmable routing architectures. By using the 
appropriate configuration, EPGAs can, in principle, 
implement any digital circuit as long as their available 
resources are adequate. Fig. 1 illustrates a general 
EPGA fabric (Maxfield, 2004) which represents a 
popular architecture that many commercial EPGAs are 
based on, and is also a widely accepted architecture 
model used by EPGA researchers. 

 

Fig. 1 General EPGA fabric 

EPGAs can be programmed after it is manufactured 
rather being limited to a predetermined, 
unchangeable hardware function. The term “field 
programmable” refers to the fact that its programming 
takes place “in the field” as opposed to devices 
whose internal functionality is hardwired by the 
manufacturer. Many different architecture and 
programming technologies have evolved to provide 
better designs that make EPGAs economically viable 
and an attractive alternative to ASICs. Modern 
EPGAs have superior logic density, low chip cost and 
performance specifications comparable to low end 
microprocessor. With multimillion programmable 
gates per chip, current EPGAs can be used to 
implement digital systems capable of operating at 
frequencies up to 550 MHz. In many cases, it is 
possible to implement an entire system using a single 
EPGA. This is very economical for specialized 
applications that do not require the performance of 
custom hardware. Significant technological 
advancements have led to architectures that combine 
EPGA’s logic blocks and interconnect matrices, with 
one or more microprocessors, embedded Intellectual 
Property (IP) cores, memory blocks, DSP blocks 
integrated on a single chip to facilitate the 
implementation of Programmable System-on-a-Chip 
(PSoC) designs. Examples of PSoC are the Xilinx 
Virtex-II Pro, Virtex-4 and Virtex-5 EPGA families, 
which include one or more hard-core PowerPC 
processors embedded along with the EPGA’s logic 
fabric. Alternatively, soft processor cores that are 
implemented using part of the EPGA logic fabric are 
also available. Many soft processor cores are now 
available such as: Xilinx 32-bit Micro Blaze and Pico 
Blaze, and the Altera Nios and the 32-bit Nios II 
processor (Rodriguez-Andina, et. al., 2007). 

COMPARISON OF EPGAS WITH ASICS, GPPS 
AND DSPS 

An ASIC is highly optimized for one specific 
application or product. ASICs can provide the best 
performance and lowest power consumption. For 



 

 

K. Seetharam 

 

w
w

w
.i

gn
it

e
d

.i
n

 

3 

 

 Journal of Advances in Science and Technology                     
Vol. IV, Issue No. VII, November-2012, ISSN 2230-9659 
 

large volume applications, ASICs can also provide the 
lowest chip cost and system cost. Despite the 
advantages of ASICs, they are often infeasible or 
uneconomical for many embedded systems because 
of high nonrecurring engineering (NRE) cost and 
longer design time (Todman, et. al., 2005. Rodriguez-
Andina, et. al., 2007). As compared to ASICs, EPGAs 
offer many advantages such as reduced NRE cost and 
shorter time to market. However, relatively high size 
and power consumption shown by EPGA devices has 
been the most important drawback of that technology. 
GPPs on the other hand are microprocessors that are 
designed to perform a wide range of computing tasks. 
As mentioned earlier, EPGAs are most often 
contrasted with ASICs. However, before deciding on 
the implementation technology, it is very important to 
study the application carefully and then determine if it 
is possible to meet performance requirements with 
existing programmable processors-GPPs or DSPs. 
Development of code for such processors require 
much less effort as compared to that required for 
EPGAs or ASICs, because developing software with 
sequential languages such as C or C++ is much less 
challenging than writing parallel code with Hardware 
Description Languages (HDLs) GPPs are also 
generally cheaper than EPGAs. Hence, if a GPP can 
meet application requirements (performance, power, 
etc.), it is almost always the best choice. In general, 
EPGAs are well suited to applications that demand 
extremely high performance and reprogram ability. 
Power consumption in a DSP depends on the number 
of memory elements used regardless of the size of the 
executable program. For EPGA, the power 
consumption depends on the circuit design. EPGAs 
are important when there is a need to implement a 
parallel algorithm, that is, when different components 
operate in parallel to implement the system 
functionality. Thus the speed of execution is 
independent of the number of modules. This is in 
contrast to DSP systems where the execution speed is 
inversely proportional to the number of functionalities. 
EPGAs deliver an order of magnitude higher 
performance than DSPs. 

METHODOLOGY 

Design methodology for the hardware realization of 
computation intensive algorithm is a combined effort of 
Electronic Design Automation (EDA) tools, methods 
and EPGA technology that enables to produce the 
optimized circuit for the end applications. A right 
combination of EPGA hardware, designed IP core and 
EDA tools will definitely enhance the efficiency of the 
design methodology. By design methodology, we 
imply the step-by-step process of EPGA design. The 
EPGA design methodology is used as a guideline for 
the hardware realization of algorithms. A number of 
design flows are used by different EPGA vendors but 
all are basically similar in sequence of tasks 
performed. These steps are common in all EPGA EDA 

tools and are essential in today’s EPGA design 
process. The EDA tools like Xilinx Integrated Software 
Environment (ISE), Altera’s Quartus II and Mentor 
Graphics’ EPGA Advantage plays a very important role 
in obtaining an optimized digital circuit using EPGA 
(Todman, et. al., 2005. Rodriguez-Andina, et. al., 
2007). A typical EPGA design flow followed in this 
work is shown in fig. 2. In this flow, design Entry is 
used to describe the algorithm/circuit that has to be 
implemented onto the EPGA device. There are two 
standard approaches to specify the EPGA designs: 
HDL-based and Schematic based depending upon the 
complexity of EPGA design. However, for complex and 
computationally intensive algorithms HDL-based 
(VHDL or Verilog) design entry is the dominant 
method used by EPGA designers. After specifying 
the design using HDLs or Schematic, the designer 
needs to validate the logical correctness of the 
design. This is performed using functional or 
behavioral simulation. 

Designers usually go through this step right after they 
finish the design entry and logic synthesis. Logic 
synthesis converts HDL or schematic-based design 
entry into a net list of actual gates/blocks specified in 
EPGA devices. This is the most important step of the 
whole design process. Technology mapping is a step 
in the middle of typical EPGA design flow. In this 
step, the EDA tool transforms a net list of technology 
independent logic gates into one comprised of logic 
cells and IOBs in the target EPGA architectures. 
Mapping plays a significant role on the quality of the 
implemented circuits. 

 

Fig. 2 EPGA designs flow. 



 

 

K. Seetharam 

w
w

w
.i

g
n

it
e

d
.i
n

 

4 

 

 A Study on Implementation of Image Processing for Multiplication Image Processing Application 

Placement follows technology mapping in an EPGA 
design flow and selects the optimal position for each 
block in a circuit. A good placement is extremely 
important for EPGA designs. It directly affects the rout 
ability and the performance of a design on EPGA. 
EPGA placement algorithms can be broadly classified 
as rout ability-driven and timing-driven. The next step 
in the EPGA design flow is routing. It is the last step in 
the design flow prior to generating the bit-stream to 
program the EPGA. Analysis is essential for today’s 
designs that have complex algorithms and huge 
amount of gates. The analysis tools (Model Sim, ISE 
simulator, Quartus II) are linked with the initial step and 
when an error occurs, the whole design has to go back 
to previous steps or in certain situations to the very 
beginning depending on the severity of the problem. 
Timing simulation validates the logical correctness of 
the design taking into account the delays of the EPGA 
device. Bit stream generation and downloading the 
generated bit file in the EPGA is the final step of the 
EPGA design flow. 

IMPLEMENTATION 

EPGA-based systolic array parallel architecture for the 
trimatrix multiplication was evaluated for different 
matrix sizes ranging from 3×3 to 7×7 multiplications. 
As shown in table 1, roughly 14% of the slices and 
57% DSP48s are utilized leaving a plenty of room to 
implement more parallel processors on the same 
EPGA chip. The results listed in table 2 were obtained 
using Xilinx ISE 9.2i tool configured to optimize for 
speed. The total processing time using Virtex-4 EPGA 
is found to be 58.93 µs; this is equivalent to a 
throughput of 16970 frames per second. The results 
indicate the feasibility of using EPGA for real time high 
speed image processing applications using this matrix-
vector multiplication. 

Table 1: EPGA Resource Utilization 

 

EPGA-based systolic array parallel architecture for the 
trimatrix multiplication was evaluated for different 
matrix sizes ranging from 3×3 to 7×7 tri-matrix 
multiplications. The same architecture is extended for 
7×7 tri-matrix multiplier. For 7×7 tri-matrix multiplier, 
the EPGA utilizes more resources as compared to 3×3 
tri-matrix multiplier. It requires more hardware 
resources which is obvious from the computational 
complexity of 7×7 multiplier. The implementation 
results are summarized and compared in table 2. 
Since the 7×7 design could not be fit into Spartan- 3 

(XC3S2000FG900-4) device, we used a more 
advanced Virtex-II Pro (XC2VP100FF1704-6) platform 
EPGA for implementation. 

Table 2: EPGA Resource Utilization Comparison 

 

CONCLUSIONS 

Most of the algorithms which are used in DSP, image 
and video processing, computer graphics and vision 
and high performance supercomputing applications 
have multiplication as the kernel operation. In this 
paper, we considered two different examples of 
multiplier architecture where speed is the main 
constraint. The first design involving computation of 
dense matrix-vector multiplication is implemented on 
Xilinx Virtex-4 EPGA and the performance is 
evaluated by computing its execution time on EPGA. 
Hardware implementation results demonstrate that it 
can provide a throughput of 16970 frames per second 
which is sufficient for many image and video 
processing applications. The second design for the 
multiplication of three matrices is based on systolic 
array and implemented on Spartan-3 and Virtex-II Pro 
platform EPGAs respectively. Implementation results 
demonstrate the suitability of EPGAs in such 
applications. Finally, we conclude that for 
multiplication of large matrices, memory based 
architecture is quite efficient whereas, for small and 
medium sized matrix multiplication, systolic array 
techniques prove to be quite efficient as 
demonstrated by the implementation results. 

REFERENCES 

S. Ogrenci, A. K. Katsaggelos, and M. Sarrafzadeh, 
(2003). “Analysis and EPGA Implementation 
of Image restoration under resource 
constraint,” IEEE Trans. on Computers, Vol. 
52, No. 3, pp. 390-399. 

C. Ebeling, C. Fisher, G. Xing, M. Shen, and H. Liu, 
(2004). “Implementing an OFDM Receiver on 
the RaPiD Reconfigurable Architecture,” 
IEEE Trans. on Computers, Vol. 53, No. 11, 
pp. 1436-1448. 

G. R. Goslin, (1997). “A Guide to Using Field 
Programmable Gate Arrays for Application-
Specific Digital Signal Processing 



 

 

K. Seetharam 

 

w
w

w
.i

gn
it

e
d

.i
n

 

5 

 

 Journal of Advances in Science and Technology                     
Vol. IV, Issue No. VII, November-2012, ISSN 2230-9659 
 

Performance,” Microelectronics Journal, Vol. 
28, Issue 4, pp. 24-35. 

J. Isoaho, J. Pasanen, O. Vainio, and H. Tenhunen, 
(1993). “DSP System Integration and 
Prototyping with EPGAs,” Journal of VLSI 
Signal Processing, Vol. 6, pp. 155-172. 

A. G. Ye and D. M. Lewis, (1999). “Procedural Texture 
Mapping on EPGAs,” in Proc. of ACM/SIGDA 
7th Intl. Symp. on Field Programmable Gate 
Arrays, pp. 112-120. 

S. Knapp, “Using Programmable Logic to Accelerate 
DSP Functions,” 
http://www.xilinx.com/appnotes/dspintro.pdf. 

J. Ma, (2003). “Signal and Image processing via 
Reconfigurable Computing,” in Proc. of the 
First Workshop on Information and Systems 
Technology. 

F. Otto and Z. Pavel, (2002). “Hardware Accelerated 
Imaging Algorithms,” in Proc. of AUTOS’2002 
Automatizace systému, pp. 165-171. 

L. Batina, S. B. Ors, B. Preneel, and J. Vandewalle, 
(2003). “Hardware architectures for public key 
cryptography,” Integration, the VLSI Journal, 
Vol. 34, pp. 1-64. 

D. Johnson, K. Gribbon, D. Bailey, and S. Demidenko, 
(2002). “Implementing Digital Signal 
Processing Algorithm’s in EPGA’s: Digital 
Spectral Warping,” in Proc. of 9th Electronics 
New Zealand Conf., pp. 72-77. 

K. Compton and S. Hauck, (2002). “Reconfigurable 
Computing: A Survey of Systems and 
Software,” ACM Computing Surveys, Vol. 34, 
No. 2, pp.171-210. 

R. Tessier and W. Burleson, (2001). “Reconfigurable 
Computing for Digital Signal Processing: A 
survey,” Journal of VLSI Signal Processing, 
Vol. 28, No. 3, pp.7-27. 

T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O. 
Mencer, W. Luk, and P. Y. K. Cheung, (2005). 
“Reconfigurable Computing: architectures and 
design methods,” IEE Proc. of Computer 
Digital Techniques, Vol. 152, No. 2, pp. 193-
207. 

J. J. Rodriguez-Andina, M. J. Moure, and M. D. 
Valdes, (2007). “Features, Design Tools and 
Application Domains of EPGAs,” IEEE Trans. 
on Industrial Electronics, Vol. 54, No. 4, pp. 
1810-1823. 

D. Pellerin and S. Thibault, (2005). “Practical EPGA 
programming in C, Prentice Hall, New York, 
USA, First Edition. 

C. M. Maxfield, (2004). “The Design Warrior’s Guide to 
EPGAs, Elsevier Publishers, New York, USA, 
First Edition. 

http://www.xilinx.com/appnotes/dspintro.pdf

