
Journal of Advances in Science and Technology

Vol. III, No. V, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 1

E-Mail: ignitedmoffice@gmail.com

Groupware Concepts for Collaborative Mobile
Groupware

Vijay Gupta

Research Scholar, Pacific university, Udaipur India

ABSTRACT: This paper has examined the implications for traditional groupware concepts and techniques when

considered in a mobile context. In addition, a range of modern groupware toolkits have been described and their suitability
for developing mobile groupware evaluated.

--♦-------------------------------------

OVERVIEW

Unfortunately, many of the design principles behind current
groupware techniques assume the existence of a reliable
and constant underlying communications infrastructure.

The following sections describe the potential impact of
mobility on the following key groupware concepts:-

• Collaboration-aware and collaboration-transparent
groupware

• Management of shared data

• Coupling

• Awareness

COLLABORATION - AWARE AND
COLLABORATION-TRANSPARENT GROUPWARE

A number of classifications exist for groupware systems.
One important example is the categorisation of groupware
systems that support multi-user interfaces as either
collaboration- aware or collaboration-transparent
[Lauwers,90].

• Collaboration-transparent Groupware

This class of groupware (also referred to as conference
unaware [Riexinger,93]) has no facilities for handling
cooperation embedded within the actual groupware
application itself. These systems are generally derived
from existing single-user based applications using some
form of view-sharing software [Greenberg,90] to share
the application’s display across several workstations. One
example of a distributed view-sharing system for the X
windows system is XTV [Abdel,94] which works by
intercepting and redistributing the X based protocol

streams. This approach enforces strict WYSIWIS
consistency across all displays and, consequently, offers
little scope for end-user tailoring.

• Collaboration-aware Groupware

This class of system is explicitly designed for
supporting cooperation between multiple users. Thus
developers are required to decide how users should be
presented with shared data and how they should be able to
control and manipulate these representations. Because of
this, the development effort involved with building
collaboration-aware groupware is generally far greater than
that involved in building collaboration-transparent
groupware.

There are a number of problems associated with using
collaboration-transparent groupware in a mobile
environment. Firstly, the lack of WYSISIS flexibility
afforded by such systems means that all conference
members are required to receive each and every X event
despite the fact that some members may have
drastically different qualities of network connection.
Secondly, the demands on network bandwidth are high
owing to the very low level of granularity used, i.e.
individual X events are distributed. A third, and associated,
problem concerns the handling of latecomers (or members
who have suffered a long period of network disconnection),
i.e. if all X events are archived then the storage
requirements imposed on servers would be prohibitive.
However, because it is often important for users to observe
the steps taken to create a shared artefact, such as a
drawing, the simplistic approach of simply transmitting a
screen shot might be inadequate. These problems are
largely overcome by collaboration-aware groupware
because the enforcement of WYSIWIS can be relaxed and
the granularity of updates can be chosen to suite the
semantics of the application itself.

Journal of Advances in Science and Technology

Vol. III, No. V, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 2

E-Mail: ignitedmoffice@gmail.com

MANAGEMENT OF SHARED DATA
INTRODUCTION

A number of researchers advocate the notion of separating
an application’s underlying data model from its associated
graphical representation or view [Patterson,91],
[Graham,92] and [Hill,92]. Examples of this approach
include Smalltalk’s Model-View-Controller (MVC) paradigm
[Krasner,88] and the Abstraction-Link-View (ALV) model
incorporated in the Rendezvous toolkit [Patterson,90].
The main argument for this approach is that it enables
developers to build groupware in which different users can
have different views of the same data model. Figure 3.1
shows an example where a user ‘A’ views some shared
information as a pie chart whilst user ‘B’ views the same

information as a bar chart One implication of this approach
is that applications require shared access to the actual
data model in a distributed environment. This raises the
interesting issue of where exactly the data model should be
located in the environment. Commonly, the groupware
system either replicates data at each member node or
locates the data model at some central repository.
Groupware researchers have long argued the relative
merits of centralised vs. replicated data architectures
[Crowley,90], [Greenberg,90], [Patterson,94], [Hill,92],
[Greenberg,94], [Wilson,95] and have also argued the
need for dynamic data architectures [Greenberg,96],
[Dourish,96a]. The following sections describe each of
these three approaches in more detail and with particular
focus on the potential impact of mobility.

Figure 1.1, The separation of the data model from its
view.

CENTRALIZED DATA ARCHITECTURES

A centralized data architecture makes use of a centralised
server to store the shared data. Client processes residing
at remote sites are responsible for passing user input

events to the central server and updating their display after
receiving update broadcasts from the central server. The
central server is responsible for processing these events
and then broadcasting any changes to every remote site.
Figure 3.2 illustrates a typical centralised architecture for a
Tic- Tac-Toe application.

Journal of Advances in Science and Technology

Vol. III, No. V, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 3

E-Mail: ignitedmoffice@gmail.com

The advantage of a centralised scheme is that
maintaining synchronisation between members is
straightforward. The reason for this is twofold. Firstly, the
shared data model is located in one place. Secondly, all
user input events are serialised by the server, i.e. the
server must process any single user input and then
broadcast any required updates, before processing the
next input request. For this reason the use of a centralised
data architecture for groupware has had a number of
advocates [Crowley,90], [Greenberg,90], [Hill,92].
However, the cost of this simplicity can be poor
performance because the single data server application
can become a processing bottleneck.

It is relatively straightforward to use locking techniques in
order to support concurrency control in centralised data
architectures. This is because the central data server can
be responsible for managing the granting and denial of
locks. One of the key issues when supporting locking is the
choice of an appropriate object granularity on which locking
can be performed. For example, in a co-authoring system,

if the granularity of the object to be locked is set too large
then the availability of the shared document will be
unacceptably poor. This would be the case if the object
being locked was the entire document and would result in
no concurrent editing being permitted. Alternatively, if the
locking granularity is set too small, e.g. locking single
characters, then, although document availability would be
very high, it is likely that the number of concurrent editing
conflicts would also be high.

REPLICATED DATA ARCHITECTURES

Replicated data architectures such as DistView
[Prakash,94] maintain a replica of the data model at every
site. Figure 3.3 shows an example of a replicated data
architecture in which the application is also replicated at
each site. Each replica is therefore required to coordinate
both local and remote actions and also attend to the
synchronisation of all copies of the shared data.

Journal of Advances in Science and Technology

Vol. III, No. V, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 4

E-Mail: ignitedmoffice@gmail.com

The main advantage of utilising this form of data
architecture is the potential to perform parallel processing,
i.e. the handling of user interactions and display updates
can occur in parallel at each site. Process bottlenecks are
thus less likely to occur.

The main disadvantage of the replicated approach is the
increased complexity concerning issues such as
concurrency control. Different systems manage this
complexity in a variety of ways. For example, DistEdit
uses the reliable atomic broadcast mechanism provided by
ISIS to synchronise updates and thus achieve concurrency
control. More specifically, DistEdit maintains a copy of the
state of the buffer for each user and uses an atomic
broadcast protocol to ensure mutual consistency

between the buffers by guaranteeing that updates arrive
in the same order at all group participants. However, the
length of time that this may take (especially in the advent of
communication delays) is non- deterministic.

DistEdit was designed so that only one user at any one
time can have permission to make changes to the text.
This user is termed the master whilst all other users are
termed observers. The master may relinquish control at
any point by issuing the appropriate command. The
layering structure of a group editor using the DistEdit toolkit
is shown below in figure 1.4.

Journal of Advances in Science and Technology

Vol. III, No. V, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 5

E-Mail: ignitedmoffice@gmail.com

As can be seen from the diagram above, the DistEdit
primitives, called by the text update routine stubs, forward
their argument, through ISIS, to all the members of the
editing group, including the master. At the receiving end of
the ISIS broadcasts are the DistEdit receive primitives,
which after performing the appropriate cursor adjustments
then call the local DistEdit primitives. In turn, the local
DistEdit primitives layer maps the DistEdit primitives back
to the editor’s original update routines.

In replicated data architectures, there are two approaches
that can be adopted when selecting when to update the
local copy of shared data. Either the local copy can be
updated first or the local copy can receive the update via
the broadcast mechanism being used. If the former
approach is used, then the local application will have a fast
response time but will not be synchronised with the
replicated copies of data until they too have been updated.

ANALYSIS OF DATA ARCHITECTURES WITH
RESPECT TO MOBILITY

Operation in a mobile context can cause problems for
groupware based on either centralised or replicated data
architectures. In particular, when utilising a centralised data
architecture a group member that becomes disconnected
from the server application is unable to access any shared
data; however, other group members remain unaffected.

Conversely, groupware based on a replicated data
architecture allows data access to members even when
they are disconnected from the rest of the group. The key
problem with the replicated approach is that difficulties with
group communications are likely to result in delays before
the consistency of shared data across all group members
can be achieved. However, such delays can be reduced
by weakening the strength of consistency guarantees used
by the system’s broadcast mechanism.

To summarise, it is difficult to argue whether centralised or
replicated data architectures are the most suitable when
developing mobile groupware. One needs to carefully
consider the set of trade-offs involved, including:
programming complexity, synchronisation requirements,
the number and location of participants expected and
predicted network latency. It can be argued [Greenberg,96]
that because parameters such as the number of group
members and the quality of the network are dynamic, no
single choice of static architecture solution will suffice.
Indeed, what is required are dynamic and reactive data
distribution architectures.

COUPLING

Dewan and Choudhary [Dewan,91] define coupling as the
means by which interface components share interaction
state across different group members. Applications are

Journal of Advances in Science and Technology

Vol. III, No. V, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 6

E-Mail: ignitedmoffice@gmail.com

described as employing either tight or loose levels of
coupling.

• Tight coupling

For certain highly-interactive tasks, e.g. group sketching,
the process of viewing the creation of a shared artefact can
be as important as viewing the final artefact itself. Such
tasks require a tight coupling between the user’s actions
affecting the shared artefact and the updated
representation of the shared artefact. For this reason, the
granularity of updates tends to be very small, for example,
a tightly coupled button widget would appear identical on
all displays as it was being pressed, moved and released.
In general, the tighter the level of coupling, the more
sensitive the application will be to communication problems
because of the higher volume of data traffic required by the
fine granularity of group updates.

• Loose coupling

With loose coupling, one group member’s actions are
propagated to other group members only when a critical
event is performed, i.e. the final state should be the same,
but intermediate states are not observed. For example, a
loosely coupled button widget might only reflect the
release action, with intermediate feedthrough eliminated

[Bentley,94]. As a consequence of the fact that loosely
coupled systems exchange state less frequently, compared
to tightly coupled systems, the performance demands on
the system are much reduced.

Dewan and Choudhary [Dewan,91] argue that flexible
coupling is important for a variety of reasons. Firstly,
groupware programs range from fully synchronous,
through nearly synchronous, to asynchronous and
coupling can be regarded as simply another way of
controlling synchronicity. For example, one can argue that
the only difference between a real- time text chat program
that shows characters as they are being typed vs.
complete messages (asynchronous email) is the level of
coupling. Secondly, tightly coupled actions showing
intermediary steps may be annoying to users in situations
where they are pursuing their own individual work. Dewan
implemented flexible coupling in the Suite toolkit
[Dewan,92] by allowing programmers and users to set
coupling attributes that indicate the level of coupling
required for individual interaction. Suite also enables
interaction entities to be considered as disjoint coupling
sets. For example, the data state, view state and a format
state can be coupled independently. This enables the view
of the shared data to be formatted in different ways across
displays. Furthermore, action coupling can be set to

determine how the commands (or call-backs) attached to
user actions are executed at other sites.

In his ‘PREP’ shared editor architecture, Neuwith
[Neuwith,94] introduces the notion of deadlines for
managing the timeliness of interactions. By defining an
appropriate deadline parameter, users can be given
feedback when the level of coupling achieved by the
system falls below that level which has been specified as
acceptable.

In a mobile context, it is important that flexible coupling is
supported and that users can stipulate the acceptable
minimum level of coupling. For example, when the level of
group connectivity is good then a tightly coupled, highly
synchronous level of interaction could be maintained by the
system. However, if the level of group connectivity
becomes poor then the system should have the capability
of switching to a more loosely coupled, asynchronous,
level of interaction requiring less data to be exchanged
between the group.

Linked with the concept of coupling is the notion of
response and notification times introduced in [Ellis,91]. The
response time is defined as the time delay before a user’s
own interface is updated to reflect his/her actions and the
notification time is defined as the time taken for the
user’s actions to be reflected across all group
members. The principle of separating response and
notification times is echoed by the work of Dix [Dix,95] who
uses the terms feedback and feedthrough.

 AWARENESS

The concept of awareness could be described as the
antithesis of transparency in that it is concerned with the
supply of information to users as opposed to the masking
of it. The main argument for supporting awareness in
groupware is that people are adaptable and given the
relevant information can solve most problems for
themselves [Dix,95]. For example, consider the locking
problems associated with enabling the concurrent editing
of a shared document. By providing the authors with an
awareness of the parts of the shared document that are
currently being edited (i.e. workspace awareness) and also
those parts for which permission to edit has been
requested, authors can devise their own social protocols in
order to avoid conflicting actions.

When considering the provision of awareness the following
questions arise:-

• What information is relevant ?

Journal of Advances in Science and Technology

Vol. III, No. V, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 7

E-Mail: ignitedmoffice@gmail.com

• How best can this information be provided ?

• How can users be enabled to control the amount of
awareness provided so that it does not interfere with the
collaborative process ?

In a mobile context, applications which access remote data
services require new forms of awareness or feedback for
informing users of the constraints (such as
communications delays) imposed by the mobile
environment [Johnson,95][Johnson,97]. More specifically,
mobile groupware applications need to give group
members an awareness of the impact of mobile
communications on the group’s collaboration. For example,
users could be made aware of the identity of those group
members experiencing poor communications QoS. The
provision of this type of information can be termed mobile
awareness [Cheverst,98] and should help prevent group
members from being forced to make (possibly false)
assumptions regarding the current state of connectivity
within the collaborating group.

SUMMARY

To summarise, the implications for traditional groupware
concepts and techniques when considered in a mobile
context are as follows:-

• Problems associated with collaboration-transparent
groupware When considered in the context of mobility,
the development of collaboration- transparent groupware
has a number of problems. For example, if using a
windows-level splitter component, e.g. an X splitter, then
network bandwidth requirements can be prohibitive. In
addition, this approach provides little flexibility over the
degree of coupling between displays and therefore an
application might be unable to adjust its communication
requirements, should network problems occur. A further
problem with this approach is that the application (having
been designed for single-user operation) is unlikely to
provide users with sufficient feedback should inconsistency
problems, caused by poor network quality, arise.

• Increased complexity of managing shared data

The increased potential for communication difficulties in a
mobile environment places additional demands on the
management of shared data. In particular, trade-offs
between data consistency and availability need to be
considered carefully and continually because, in a mobile
environment, the quality of group communications is likely
to fluctuate dramatically.

• The need for flexible coupling

When the quality of group communications is poor, it is
difficult to maintain a close degree of coupling because of
the high level of communications required. It is therefore
important for mobile groupware to support flexible
coupling, so that the degree of coupling used can match
the level of group communications available.

• The need for increased (mobile) awareness

Depending on the application scenario, it may be useful to
provide users with mobile awareness. Such awareness
can reveal (where appropriate) the effect of the mobile
communications environment on the group’s collaboration,
thus enabling users to make informed decisions in order to
cope with possible communication difficulties.

REFERENCES:-

 [Anker,97] Anker, T., V. Gregory, D. Dolev and I.
Keidar. “The Caelum Toolkit for CSCW: The Sky is
the Limit.”, Proc. Third International Workshop on
Next Generation Information Technologies and
Systems (NGITS 97), June 30 - July 3, 1997, Neve
Ilan, Israel.

 [APM,89] APM Ltd. “The ANSA Reference Manual
Release 01.00.”, Architecture Projects
Management Ltd., Cambridge, U.K. 1989.

 [APM,92] APM Ltd. “An Introduction to
ANSAware 4.0.”, Architecture Projects
Management Ltd., Cambridge, U.K. 1992.

 [Brinck,92] Brinck, T. and L.M. Gomez. “A
Collaborative Medium for the Support of
Conversational Props.”, Proc. ACM CSCW'92
Conference on Computer Supported
Cooperative Work, pages 171-178, Toronto,
Canada, October 31-November 4 1992.

 [Burridge,98] Burridge, R. “Java Shared Data
Toolkit User Guide.”, User Guide, Version 1.4, Sun
Microsystems Inc, June 1998.

 [Casio,99] Casio. “Casio Announces World’s
Smallest Multimedia Color Palm-Size PC.”,Press
Release, Casio Inc.
http://www.casio.com/corporate/pressdetail.cfm?ID
=60. January 1999.

 [Chang,84] Chang, J. and N. Maxemchuk.
“Reliable Broadcast Protocols.”, ACM
Transactions on Computer Systems, Vol. 2, No. 3,
pages 251-275, August 1984.

Journal of Advances in Science and Technology

Vol. III, No. V, February-2012, ISSN 2230-9659

Available online at www.ignited.in Page 8

E-Mail: ignitedmoffice@gmail.com

 [Dourish,96b] Dourish, P. “Consistency
guarantees: Exploiting application semantics for
consistency management in a collaboration
toolkit.”, Proc. ACM CSCW'96 Conference on
Computer Supported Cooperative Work, pages
268-277, Boston, November 1996.

 [Edwards,96] Edwards, K., “Policies and Roles in
Collaborative Applications.”, Proc. ACM CSCW'96
Conference on Computer Supported Cooperative
Work, Boston, November 16-20 1996.

 [Ege,87] Ege, A. and A. Ellis. “Design and
Implementation of GORDION, an Object Base
Management System.”, Proc. 3rd International
Conference on Data Engineering, pages 36-45,
February 1987.

 [Greenberg,91] Greenberg, S. and R. Bohnet.
“GroupSketch: A multi-user sketchpad for
geographically-distributed small groups.”, Proc.
Graphics Interface '91, Calgary, Alberta, Canada.
1991.

 [Greenberg,94] Greenberg, S. and D. Marwood,
“Real time groupware as a distributed system:
Concurrency control and its effect on the
interface.”, Proc. ACM CSCW'94 Conference on
Computer Supported Cooperative Work, pages
207-217, Chapel Hill, North Carolina, October 22-
26 1994.

 [Greenberg,96] Greenberg, S. and M. Roseman.
“Groupware Toolkits for Synchronous Work.”
Research Report 96/589/09, Department of
Computer Science, University of Calgary, Calgary,
Canada, November 1996.

 [HP,99a] Hewelet Packard, “HP Jornada handheld
PCs.”, http://www.hp.com/jornada/. 1999.

 [HP,99b] Hewelet Packard, “HP Omnibook 4100
Notebook PC - Data Sheet.”,
http://www.hp.com/omnibook/products/4100/datas
heet.html. 1999.

 [IEEE,97] Institute of Electrical and Electronics
Engineers. “Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY)
specifications.”, IEEE Standards document,
802.11-1997. ISBN 1-55937-935-9. June 1997.

 [IrDA,99] Infrared Data Association. “Technical
Summary of IrDA DATA and IrDA CONTROL.”,
http://www.irda.org/standards/standards.asp. 1999.

 [ISO,92] International Standards Organisation.
“Draft Recommendation X.901: Basic Reference
Model of Open Distributed Processing - Part1:
Overview and Guide to Use.”, Draft Report,
International Standards Organisation WG7
Commitee. November 1992.

 [Lauwers,90] Lauwers, J.C. and K.A. Lantz.
“Collaboration awareness in support of
collaboration transparency.”, Proc. ACM
SIGCHI'90 Conference on Human Factors in
Computing Systems, pages 303-211, Seattle,
Washington, April 1-5 1990.

 [Leopold,91] Leopold, R.J. “Low-earth orbit global
cellular communications network.”, Proc. IEEE
International Conference on Communications -
ICC '91, pages. 1108-1111. 1991.

 [Microsoft,98] Microsoft. “Distributed Component
Object Model Protocol.”, Internet Draft
Specification,
http://www.microsoft.com/oledev/olecom/draft-
brown-dcom-v1-spec-02.txt. January 1998.

 [Microsoft,99] Microsoft, “Microsoft Windows CE”,
http://www.microsoft.com/windowsce/. 1999.

http://www.microsoft.com/windowsce/

