

Journal of Advances in Science and Technology

Vol. IV, No. VIII, February-2013, ISSN 2230-9659

ON SLIGHTLY TIGB-CONTINUOUS FUNCTIONS

On Slightly πgb-Continuous Functions

M. C. Sharma¹ Poonam Sharma² Raj Singh³

¹Department of Mathematics N.R.E.C. College Khurja-203131 (U.P.)

Abstract. In this paper, we introduce a new class of continuous functions called slightly πgb -continuous functions by using π gb-closed sets in a topological space. Also the relations of slightly π gb-continuous functions with other weak forms of \(\pi \)gb-continuous functions have been investigated.

INTRODUCTION

In this paper, we introduce a new class of continuous functions called slightly πgb -continuous functions by using π gb-closedsets due to Ahmad Al-Obiadi et al.[1]. Ahmad Al-Obiadi et al.[1] introduced the notion of πgb -closed sets in a topological space and obtained their various properties. In 2004, Ekici and Caldas[6] introduced the notion of slightly y-continuity (or slightly b-continuity) which is a weakened form of b-continuity. The relationships of slightly πgb -continuity with other weaker forms of continuity viz. weakly πgb-continuity, somewhat πgb -continuity, almost πgb -continuity and faintly πgb -continuity have been studied. Throughout the present paper, X and Y are always topological spaces.

Mathematics Subject Classification: 2000AMS 54C10

Keywords:Slightly π gb-continuity, almost πabcontinuity, weakly πgb -continuity, faintly πgb -continuity, somewhat πgb-continuous.

- 2. Preliminaries.
- **2.1.Definition.** A subset of a topological space X is said to be
- 1.regular open [13] if A=int(cl(A)).
- 2.b-open[3](or y-open [7]) if $A \subset int(cl(A)) \cup cl(int(A))$,
- 3.gb-closed[1] (resp. g*b-closed[15]) if b-cl(A) $\subseteq U$, whenever $A \subset U$

and U is open (resp. g-open) in X.

 $4.\pi$ g-closed [5] (resp. π gb-closed[2], π gp-closed[11], **πgsp-closed[2]**) if $cl(A) \subset U$ (resp. b-cl(A) $\subset U$, p-cl(A)

- \subset U, sp-cl(A) \subset U), whenever A \subset U and U is π -open
- 5.**\delta*-open** [8] if for each $x \in A$, there exists a clopen subset G of X such that $x \in G \subset A$.
- 6.**θ-open** [14] if for each x ∈ A, there exists an open subset G of X such that $x \in G \subset cl(G) \subset A$.
- 7. A subset B of X is said to be a πgb **neighbourhood** [2] of a point $x \in X$ if there exists a π gb-open set containing x and is contained in A.

The complement of b-closed (resp. gb-closed, g*bclosed, πg -closed, $\pi g b$ -closed, $\pi g p$ -closed, $\pi g s p$ closed, δ^* -open , θ -open) set is called **b-open** (resp. gb-open, g*b-open, πg-closed, πgb-open, πgpopen, π gsp-open, δ *-closed, θ -closed) set.

The intersection of all b-closed(resp. δ^* -closed) sets of X containing A is called the **b-closure** (resp. δ^* closure) of A and denoted by b-cl(A) (resp. δ^* cl(A)).

The union of all b-open (resp. δ^* - open) subsets of X which are contained in A is called the **b-interior** (resp. δ^* -interior) of A and denoted by **b-int**(A) (resp. δ^* -int(A)). The family of all b-open (resp. bclosed, clopen, b-clopen, δ^* -open, δ^* -closed, regular open, π gb-closed, π gb-open) sets in X is denoted by $BO(X)(resp.BC(X),CO(X),BCO(X),\delta^*O(X),\delta^*C(X),RO(X))$ $X),\pi GBC(X),\pi GBO(X)).$

- **2.2.Remark[1].** Every b- closed set is π gb-closed.
- **2.3.Proposition[1].** Every πgp -closed set is πgb closed.

²Department of Mathematics N.R.E.C. College Khurja-203131 (U.P.)

³Department of Mathematics Govt. College Julana Jind (Haryana) INDIA

- **2.4.Proposition[1].** Every π gb-closed set is π gspclosed.
- 2.5.Remark .We have the following implications for the properties of subsets

closed ⇒ b-closed πg -closed $\Rightarrow \pi g p$ -closed

ab*-closed ⇒ ab-closed $\Rightarrow \pi ab$ closed $\Rightarrow \pi gsp$ -closed

where none of the implications is reversible.

- **2.6.Example.** Let $X = \{ a, b, c \}$ and $\tau = \{ \phi, X, \{a\} \}$. Let $A = \{c\}$ is a b-closed set but not a closed in X.
- **2.7.Example.** Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}$ and $A = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}$ b). Then X is the only regular open $(\pi$ -open) set containing A. Hence A is πgb -closed, but A is not bclosed, since b-cl (A) = X.
- **2.8.Example.**Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ }. Let A= $\{a\}$. Then A is b - closed . Hence A is πgb closed, but A is not πgp -closed, since A is regular

open (π -open) and p-cl(A)= {a, c} $\not\subset$ A.

- 3. On Slightly πgb-Continuous Functions
- **3.1.Definition.** A function $f: X \rightarrow Y$ is said to be
- 1.almost b-continuous (briefly a.b.c.) [9](resp.almost **πgb-continuous** (briefly a.πgb.c.)) if for each $x \in X$ and each $V \in RO(Y)$ containing f(x), there exists

 $U \in BO(X)$ (resp. $U \in \pi GBO(X)$) containing x such that $f(U) \subset V$.

- 2.weakly b-continuous (briefly w.b.c.) [12] (resp. weakly πgb -continuous (briefly w. $\pi gb.c.$)) if for each $x \in X$ and each open set VinY containing f(x), there exists $U \in BO(X)$ (resp. $U \in \pi GBO(X)$) containing x such that $f(U) \subset cl(V)$.
- 3.somewhat b-continuous (briefly sw.b.c.) [4] (resp. somewhat πgb -continuous (briefly sw. $\pi gb.c.$)) if for each open set V in Y and $f^{-1}(V) \neq \emptyset$ there exists U

BO(X) (resp. $U \in \pi GBO(X)$) such $U \neq \phi$ and $U \subset f^-$

4. faintly b-continuous (briefly f.b.c.) [10] (resp. **faintly \pi gb -continuous** (briefly f. $\pi gb.c.$) if for each $x \in X$ and each θ -open set V in Y containing f(x), there exists $U \in BO(X)$ (resp. $U \in \pi GBO(X)$)) containing x such that $f(U) \subset V$.

- 5.slightly γ-continuous [6] (resp. slightly πgb**continuous)** if for each $x \in X$ and each $V \in CO(X)$ containing f(x), there exists a $U \in BO(X)$ (resp. $U \in BO(X)$) $\pi GBO(X)$) $U \in containing x such that <math>f(U) \subset V$.
- **3.2.Theorem.** For a function $f: X \to Y$, the following are equivalent:
- (a) f is s. π gb.c.;
- (b) $f^{-1}(V) \in \pi GBO(X)$ for every $V \in CO(X)$;
- (c) $f^{-1}(V) \in \pi GBC(X)$ for every $V \in CO(X)$;
- (d) $f^{-1}(V) \in \pi GBCO(X)$ for every $V \in CO(X)$.
- **3.3.Theorem.** For a function $f: X \to Y$, the following are equivalent:
- (a) f is s. π gb.c.;
- (b) $f^{-1}(V) \in \pi GBO(X)$ for every δ^* -open set V in Y :
- (c) $f^{-1}(V) \in \pi GBC(X)$ for every δ^* -closed set V in Y;
- (d) $f(b-cl(A)) \subset \delta^*-cl(f(A))$ for every subset A of X;
- (e) b-cl(f⁻¹ (B)) \subset f⁻¹(δ^* -cl(B)) for every subset B of

Proof. (a) \Rightarrow (b). Let V be a δ^* -open set in Y and let $x \in f^{-1}(V)$. Then $f(x) \in V$. The δ^* -openness of Vgives a $U \in CO(Y)$ such that $f(x) \in U \subset V$.this implies that $x \in f^{-1}(U) \in f^{-1}(V)$. Since f is s. $\pi gb.c.$, from **Theorem 3.2**, we have, $f^{-1}(U) \in$ π GBO(X). Hence f $^{-1}$ (V) is a π gb-neighbourhood of each of its points. Consequently, $f^{-1}(V) \in \pi GBO(X)$.

(b) \Rightarrow (c). It is obvious from the fact that the complement of a δ*-closed set is

δ*-open.

- (c) \Rightarrow (d). Let A be a subset of X. We have,
- δ^* -cl(f(A)) = \cap {F : f(A) \subset F, F \in δ^* C(Y)} is a δ^* -closed set in Y. Thus

 $A \subset f^{-1}(\delta^*\text{-cl}(f(A)) = \bigcap \{ f^{-1}(F) : f(A) \subset F, F \in \delta^*C(Y) \}$ $\in \pi GBO(X)$. Thus, we obtain b-cl(A) $\subset f^{-1}(\delta^*-cl(f(A)))$. Hence, $f(b-cl(A)) \subset \delta^*-cl(f(A))$.

- (d) \Rightarrow (e). Let B be a subset of Y . We have
- $f(b-cl(f^{-1}(B))) = \delta^*-cl(f(f^{-1}(B))) \subset \delta^*-cl(B)$ and hence, we obtain,

b-cl(f⁻¹(B)) \subset f⁻¹(δ *-cl(B)).

- (e) \Rightarrow (a). Let V be a clopen set in Y . Then V is $\delta^{\star\text{-}}$ closed in Y. Thus
- b-cl(f $^{-1}(B)$) \subset f $^{-1}(\delta^*$ -cl(B)) = f $^{-1}(B)$. Therefore, f $^{-1}(B)$ is closed. Hence,
- by **Theorem 3.2**, we obtain f is s. $\pi gb.c.$
- **3.4.Theorem.** If a function $f: X \to Y$ is w. $\pi gb.c.$ then, f is s. $\pi gb.c.$
- **Proof.** Let $x \in X$ and let V be a clopen set in Y containing f(x). Therefore,by weakly πgb -continuity of f, there exists $U \in \pi GBO(X)$ containing x such that
- $f(U) \subset cl(V) = V$. Since, $x \in X$ is arbitrary, hence, f is s. $\pi gb.c.$
- **3.5.Remark.** The following diagram follows immediately from the definitions in which none of the implications is reversible.

- $a.\pi gb.c \Rightarrow w.\pi gb.c \Rightarrow s.\pi gb.c$
- **3.6.Example.** Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}, \sigma = \{\phi, \{a\}, \{c\}, \{a, c\}, Y\}.$

Then the identity function $i:(X,\tau)\to (Y,\sigma)$ is $s.\pi gb.c.$ but not $w.\pi gb.c.$ at $b\in X.$

- **3.7.Remark.** From definition, it is clear that every a. π gb.c. is w. π gb.c. and hence s π gb.c. The converse is clearly false as shown by **Example 3.6**.
- **3.8.Definition.** A toipological space X is said to be **extremally disconnected** [16] if closure of every open set is open in X.
- **3.9.Theorem** If a function $f: X \to Y$ is f. $\pi gb.c.$ then, f is s. $\pi gb.c.$

Proof. The result is obvious from the fact that every clopen set is θ -open.

- **3.10.Remark.** The converse of the above result is however, in general, not true as shown by the following example.
- **3.11.Example.** Let $\tau = \{G \subset R : 0 \in G\} \cup \{\phi\}$ and let σ be the usual topology on R. Then the identity function $i: (R, \tau) \to (R, \sigma)$ is s. $\pi gb.c.$ but not $f.\pi gb.c.$ at all points of R except 0.

- **3.12.Theorem.** A s. $\pi gb.c. f: X \rightarrow Y \text{ is f. } \pi gb.c. \text{ if } Y \text{ is extremally disconnected.}$
- **Proof.** Let $x \in X$ and let V be a θ -open set in Y containing f(x). Thus there exists an open set W such that $f(x) \in cl(W) \subset V$. By extremally disconnectedness of Y, cl(W) is open. Thus, $cl(W) \in CO(Y)$. Since, f is g. gb.c., therefore, there exists a g-open set g containing g such that g color g containing g such that g color g containing g such that g containing g such that
- **3.13.Theorem.** Let $f: X \to Y$ be a function, where, Y is extremally disconnected. Then f is f. $\pi gb.c.$ if and only if f is s. $\pi gb.c.$

Proof. It can be directly obtained by using **Theorem 3.9** and **Theorem 3.12**.

- **3.14.Remark.** Somewhat b-continuity and slightly πgb -continuity are independent of each other as shown by
- **3.15.Example.** The function defined in **Example 3.11** is s. π gb.c. but not sw. π gb.c. Again let $X = Y = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$, $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$. Then the identity function $i: (X, \tau) \to (Y, \sigma)$ is sw. π gb.c. but not s. π gb.c.

REFERENCES

- 1. Ahmad Al-Omari and Mohd.Salmi Md. Noorani, On generalized b-closed sets, Bull. Malays. Math. Sci. Soc. (2)**32**(1)(2009),19**-3**0.
- 2. A. K. Al-Obiadi , π generalized b-closed sets in topological spaces, IBN AL- HAITHAM J. For Pure and Appl. Sci. Vol.**24** (3) 2011.
- 3. D. Andrijevic, On b-open sets, Mat. Vesnik, **48**(1996), 59-64.
- 4. S.S. Benchalli, P.M. Bansali, Somewhat b-continuous and somewhat bopen functions in topological spaces, Int. J. Math. Anal., **46** (2010), 2287-2296.
- 5. J. Dontchev and T. Noiri, Quasi-normal spaces and πg closed sets. *Acta Math. Hungar* . **89**(3)(2000), 211 219.
- 6. E. Ekici, M. Caldas, Slightly γ -continuous functions, Bol. Soc. Paran. Mat., **22**(2004), 63-74.
- 7. A.A. El-Atik, A study on some types of mappings on topological spaces, M.Sc. thesis, Tanta University, Egypt, 1997.

- R.C. Jain, The role of regularly open sets in general topology, Ph.D. thesis, Meerut University, India, 1980.
- A. Keskin, T. Noiri, Almost b-continuous functions, Chaos, Solitons & Fractals, 41(2009), 72-81.
- A.A. Nasef, Another weak form of faint continuity, Chaos, Solitons & Fractals, 12(2001), 2219-2225.
- 11. J.H.Park, πgp -closed sets in topological spaces, Indian J. Pure Appl. 112(4),257-283.
- U. Sengul, Weakly b-continuous functions, 12. Chaos, Solitons and Fractals, 41(2009), 1070-1077.
- M. H. Stone, Applications of the theory of rings to general topology, Trans. Amer. Math. Soc. **41**(1937), 374**-**381.
- N.V. Velicko, H-closed in topological spaces, Amer. Math. Soc. Trans.78(1968,),103-118.
- 15. D.Vidhya and R.Parimelazhagan, g*b-closed sets in topological spaces, Int. J. Contemp. Math. Sci., Vol. 7, no. 27(2012), 1305-1312.
- 16. S. Willard, General Topology, Addison-Wesley Publishing Company, Inc. Reading Mass., 1970.