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Abstract - Knowledge in the medical field is often expressed by distinct and subjective norms. Much 
research and development efforts have focused on using deep learning algorithms to predict the 
likelihood of illnesses from EHR in recent years. When it comes to risk prediction, deep learning-based 
techniques outperform more conventional machine learning models. But nothing in the literature fully 
accounts for what doctors already know, such as the connections between illnesses and their risk 
factors. This research examines the use of Multi-layer Perceptron models for the categorisation of 
diagnoses in electronic health records. The raw data and a modified version of the EHR dataset are used 
to train two MLPs with distinct topologies. For comparative purposes, a Random Forest is used as a 
baseline. To phenotype patients using their electronic health records, we provide a deep learning 
method. Predictive modelling of chronic illnesses is the particular scenario used to verify the suggested 
model on a real-world EHR data warehouse. Many deep learning applications on EHRs have been 
effective, and there is still a lot of potential to be realised. It has been discovered that deep learning 
models can learn from the limited EHR dataset, but not to a level where they outperform the baseline 
model. 
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INTRODUCTION 

A patient's paper chart may now be accessed digitally 
with the use of an electronic health record (EHR). 
Electronic health records (EHRs) are accessible, 
secure, and real-time records that are centred on the 
patient. Although electronic health records (EHRs) do 
include patients' medical and treatment histories, EHR 
systems are designed to include more than just the 
typical clinical data obtained at a provider's office. By 
analysing the vast amounts of data stored in Electronic 
Health Records (EHR), researchers and healthcare 
practitioners may get closer to the goal of personalised 
treatment. But there are problems with raw EHR data 
as well, including high dimensionality, inconsistency, 
bias, sparsity, and irregularity in time. The key objective 
in the medical area, known as risk prediction, involves 
predicting patients' probable ailments. However, typical 
machine learning or statistical models [1,2] become 
much more difficult to directly apply due to these 
obstacles. Consequently, stronger models are required 
to address the difficulties brought about by the use of 
raw EHR data in risk prediction tasks. In several fields, 
such as computational phenotyping, risk prediction, 
and diagnostic prediction, deep learning models have 
recently shown the capacity to directly extract relevant 

characteristics from unstructured electronic health 
information. In order to forecast the occurrence of 
heart failure, attention-based recurrent neural 
networks (RNN) are used, particularly for risk 
prediction tasks. Also included are convolutional 
neural networks (CNNs), which boost performance 
by capturing the local temporal features of patients' 
visits and using them to forecast illness risks. 

The risk prediction tasks have been successfully 
completed by the aforementioned deep learning-
based models; nevertheless, these models do not 
take into account the significance of previous 
medical information, such as the correlations 
between illnesses and their associated risk factors. 
Everyone knows that previous medical knowledge is 
crucial in the healthcare field. Before taking a 
patient's present symptoms into account, doctors 
thoroughly examine their medical history, which 
includes things like the patient's current medicines, 
smoking habits, alcohol use, and any illnesses that 
run in the family. The doctor may be able to make 
an initial diagnosis based on the patient's present 
symptoms and medical history. Patients may have 
symptoms such as a racing heart, shortness of 
breath, increased nighttime urination, chest 
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discomfort, and fainting. For over eight years, he or she 
has battled hypertension and coronary artery disease. 
A rapid diagnosis of heart failure, rather than another 
illness, may be made by the doctor based on their 
experience and the patient's present symptoms. 
Reason being, heart failure may be triggered by 
hypertension and coronary artery disease. Thus, it is 
crucial for risk prediction tasks to take into account past 
medical information. 

LITERATURE REVIEW 

Raju, K & Vidyarthi, Ankit & Dara, Suresh & Gupta, 
V & Khan, Baseem. (2022) [3] This research proposes 
a methodology that combines Edge-Fog-Cloud 
computing to provide quick and accurate results. Data 
from several patients is collected by the hardware 
components. Important characteristics are retrieved by 
extracting cardiac features from signals. Also collected 
are the results of feature extraction for additional 
characteristics. In this case, Galactic Swarm 
Optimisation (GSO) is used to optimise the CCNN 
hyperparameters. According to the results of the 
performance study, the proposed GSO-CCNN 
outperforms PSO-CCNN, GWO-CCNN, WOA-CCNN, 
DHOA-CCNN, DNN, RNN, LSTM, CNN, and CCNN in 
terms of accuracy by 3.7%, 3.6%, 7.6%, 67.9%, 48.4%, 
33%, 10.9%, and 7.6%, respectively. Therefore, the 
proposed system's efficacy above the traditional 
models is guaranteed by the comparison study. 

Askar, Shavan & Jameel, Zhala & Kareem, Shahab. 
(2021) [4] In this review article, we'll look at few ways 
to summarise DL's roles in the FC industry. Advanced 
DL customers with top-tier services have emerged as a 
result of FC's DL deployment, paving the way for more 
in-depth analytics and smarter mission replies. 

Nancy, A.A.; Ravindran, D.; Vincent, D.R.; 
Srinivasan, K.; Chang, C.-Y. (2023) [5] In order to 
detect cardiovascular illness, this study proposed a 
smart healthcare system that makes use of fog. For 
pre-processing and predictive analytics tasks, it 
integrated a fuzzy inference system (FIS) with the 
variation of the gated recurrent unit (GRU) from the 
recurrent neural network model. With a classification 
accuracy of 99.125%, the suggested approach 
demonstrates much better performance outcomes. The 
suggested method outperforms cloud computing in 
terms of latency, response time, and jitter, with most 
healthcare data analytics processing taking place at 
the fog layer. In particular, deep learning models excel 
in predictive analytics and other complex tasks. 
outcomes from the experiments show that time-critical 
healthcare applications may benefit from the 
decentralised fog model and deep learning's unique 
ability to provide near-perfect outcomes. 

Kumar, Y., Koul, A., Singla, R., & Ijaz, M. F. (2023) 
[6] A wide range of ailments, including Alzheimer's, 
cancer, diabetes, chronic heart disease, TB, stroke and 
cerebrovascular, hypertension, skin, and liver disease, 
may be diagnosed using AI approaches, as covered in 
this article's complete survey. The medical imaging 

dataset, feature extraction method, and prediction 
methodology were all part of our comprehensive study. 
Prediction rate, accuracy, sensitivity, specificity, area 
under curve precision, recall, and F1-score are some of 
the quality metrics that are used to evaluate the 
outcomes based on the research of many publications 
on illness diagnosis. 

Vu Khanh, Quy & Nguyen, Van-Hau & Anh, Dang & 
Ngoc, Le. (2021) [7] We compare many computer 
systems in this post. Then, for Fog-IoHT applications, 
we provide a shared architectural framework that is 
based on fog computing. In addition, we highlight 
potential uses and difficulties of fog computing in 
Internet of Things (IoT) healthcare applications. The 
investigation revealed that fog computing-based IoHT 
applications had enormous promise. Our research is 
founded on the premise that fog-based healthcare IoT 
applications might serve as a valuable roadmap for 
their future evolution. 

RESEARCH METHODOLOGY 

We test the proposed model on a real-world EHR 
data warehouse and see how well it performs in two 
clinical scenarios: early CHF diagnosis and COPD 
prediction. Our model-learned features not only 
improve prediction performance, but they also make 
clinical sense, according to the findings. 

Approach  

Two MLPs, one with a naïve model and the other 
with an architecture supplied by the principle, are 
used in the tests. Our model is constructed using 
the patient's electronic health record's temporal 
matrix form. A longitudinal event matrix is used to 
represent the electronic health record (EHR), with 
time stamps serving as the horizontal axis and event 
values as the vertical axis. In an electronic health 
record matrix, the i-th entry is set to 1 if the j-th time 
stamp for the relevant patient observes the i-th 
occurrence. Unfortunately, there are a number of 
reasons why this event matrix encoding is not 
amenable to the traditional CNN model, unlike 
photos and videos [8]. 

 

Figure 1: An electronic health record data 
example's fundamental model architecture 
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You can see a small variation of the CNN design in 
Figure 1, which represents the fundamental model 

architecture [9]. Represented as X, where X ∈ R d×t, is 
every event matrix of length t. The i-th event item's d-

dimensional event vector is denoted as xi ∈ R d. 
Typically, the combination of elements xi, xi+1, ·, and 
xi+j is denoted as xi:i+j. In order to create a new 

feature, a filter w ∈ R d×h is used in a one-side 
convolution operation on a window of h event features. 
As an example, a non-linear function like rectification 
(ReLU) or tangent (Tanh) is used to create a feature ci 
from a window of events xi:i+h−1 by solving the 
equation ci = f(w. xi:i+h−1 + b), where b is a bias 
component and f is defined in R. 

Processing of Data  

Sixty-91,141 samples make up the data. The number 
of features in each sample is 1209. There are a total of 
1209 elements in the questionnaire; 1208 of them are 
numerical and represent the various patient responses. 
The numerical values in this collection come from 
several sources and are organised as follows: a set of 
ternary columns where 0=No, 1=Not sure, and 2=Yes; 
and a set of columns with ranking numeric values, 
some of which are normalised and some of which are 
not. 

Structure of Networks 

You may implement the fundamental architecture of 
MLPs by selecting an optimisation technique, an 
activation function, and a cost function. Each model's 
parameters, including its number of layers and nodes, 
dropout probability, batch size, etc., are experimentally 
modified. The models are then evaluated and 
compared based on the parameters that provide the 
highest performance [10]. 

 MLP-a: MLP-a is a Upon finishing the 
parameter tweaking, MLP-a is selected as a 
three-layer network. The first hidden layer has 
thirty neurones, the second contains forty, and 
the final contains fifteen. With a rectified linear 
unit activation function, the output is zero in the 
case when the total of the neurone inputs is 
less than zero, and raw output in all other 
cases. 

Table 1: Details on MLP-a 

 

 MLP-b: A three-layer network with ten 
neurones in the first hidden layer, twenty in the 

intermediate layer, and fifteen in the final layer 
is selected as MLP-b. Along with being a 
softmax function, the cost function also 
includes cross entropy, a measure of the 
dissimilarity between the actual and predicted 
class probability distributions that is sometimes 
employed as a substitute for squared error. 

Table 2: Details on MLP-b 

 

DATA ANALYSIS 

Comparison models  

After making its own adjustments to the dataset, the 
Random Forest model was 61.8% accurate. On 
average, recall is 62.2% and precision is 63.4%. 
Thus, 62.8% is the F1 score. The accuracy drops to 
38.8%, the precision to a pitiful 0.94%, the recall to 
2.6%, and the F1 score to 1.4% when using a naïve 
model that guesses simply the majority class. 

Matrix of MLP confusion on Dmin 

For the MLPs on Dmin, the confusion matrix shows 
the relationship between ypred and yreal; the x-axis 
shows ypred and the y-axis shows yreal. 

 

Figure 2: The MLPs' Operation on Dmin 
Confusion Matrix 

A matrix of confusions for MLPs on Dalt 

The confusion matrix illustrates the relationship 
between ypred and yreal for the MLPs on Dalt. On 
the x-axis, we see yreal, and on the y-axis, ypred. 
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Figure 3: Matrix of Perplexities for MLPs Running 
on Dalt 

Two variants of the dataset are used to assess the 
models. Dmin is the one with little changes, while Dalt 
is the one with many changes that are often employed 
on machine learning datasets. When tested on Dalt, 
both models outperform Dmin. The possibility that the 
dataset size is insufficient to allow the deep models to 
train adequately is one of the project's concerns, as 
mentioned in the thesis's limits section. This is 
supported by the fact that Dalt outperforms Dmin in 
terms of performance. Data simplification (by, for 
example, narrowing the feature space) seems to aid 
the model in Dalt. This may also help to explain why 
the baseline model outperformed the MLPs. Compared 
to the MLPs, the baseline model is simpler, which 
allows it to generalise more effectively from a smaller 
dataset. The confusion matrices on Dmin show that 
both models give the class j069 an exaggerated 
probability. This is because the model became overfit 
to the class that was more prevalent in the training 
data. In order to prevent overfitting, dropout is used. 
However, there is a trade-off that has to be made when 
setting the chance of a node being closed down during 
training iterations. 

Evaluation  

We tested our methods on a real-world EHR data 
warehouse with 319,650 patient records spanning 4 
years to see how well they worked. To create the EHR 
sequences, we employ the diagnostic data according 
to the first three digits of the ICD-9 form. The challenge 
of predicting the likelihood of chronic illness emergence 
at an early stage will be our focus. Figure 4 shows the 
entire setup. We begin by obtaining a collection of case 
patients who have been medically diagnosed with a 
condition with the assistance of our domain expert. 
Then, we use patient demographics and clinical 
features to create a set of group matched controls. 

 

Figure 4: Research environment for the early 
prediction of the risk of chronic illness 

development 

Chronic Obstructive Pulmonary Disease (COPD) and 
Congestive Heart Failure (CHF) are the two illnesses 
that our investigations focus on. A total of 3,850 
healthy controls and 1,127 cases makes up the CHF 
patient group. The COPD patient group consists of 
2,385 healthy controls and 477 actual cases. We use 
all the records in our database that were accessible 
before the prediction window to train our proposed 
model for both illnesses. We set the forecast window to 
180 days. Put another way, we can anticipate the 
likelihood of a patient developing CHF or COPD six 
months down the road by analysing all of their medical 
information. 

CHF:  

Using area under the curve (AUC) across 10-fold cross 
validation, Table 3 summarises the findings for CHF 
prediction. The table clearly shows that our approaches 
substantially and repeatedly beat the feature-based 
baseline. In particular, out of all the approaches, the 
SF-CNN performs the best. Using AUC as a metric, 
SF-CNN improves prediction accuracy by 1.5 
percentage points when 60% training data is used, 
and by 5.2 percentage points when 90%. The 
similarities in their designs explain why EF-CNN and 
the basic CNN model (BS-CNN) function similarly. 
By a hair, LF-CNN outperforms BS-CNN and EF-
CNN in terms of prediction accuracy. The ability of 
LF-CNN to detect discriminative local temporal 
patterns for categorisation is one probable 
explanation. Convolutional neural network (CNN) 
based models would benefit from huge training data 
sets, as the performance gains of all suggested 
models grow in direct proportion to the amount of 
training data. 

Table 3: Standard deviation and area under the 
curve for predictions on the CHF cohort using 

varying training data ratios 

 

COPD:  

You may see the results of the COPD prediction in 
Table 4. The CHF cohort shows a similar pattern. 
Even with 90% training data, SF-CNN improves the 
prediction AUC by 5.3% compared to the baseline, 
making it the best performer. Nevertheless, LF-
CNN's performance on this dataset falls short of its 
CHF Cohort counterpart. Reasons for this include 
the fact that ESRD Cohort is a smaller dataset and 
the fact that LFCNN is more prone to over-fitting due 
to its larger number of parameters. In fact, LF-CNN 
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outperforms EF-CNN and BS-CNN when the training 
set is decreased to 60%. 

Table 4: Standard deviation and area under the 
curve for COPD cohort predictions using various 

training data ratios 

 

CONCLUSION 

In conclusion, we provide a novel approach to 
analysing patient EHRs using a deep learning 
architecture. The input, one-side convolution, max-
pooling, and softmax prediction layers make up our 
system. To further analyse the temporal smoothness of 
patient EHRs in the suggested framework, other 
temporal fusion strategies are also explored. Lastly, we 
statistically and subjectively test the suggested model's 
efficacy using synthetic and real-world data. Many 
deep learning applications on EHRs have been 
effective, and there is still a lot of potential to be 
realised. Results from this experiment show that deep 
learning models can learn from the limited EHR 
dataset, but they still can't compete with the baseline 
model's performance. It seems like a better idea to use 
a simpler approach like Random Forest and put more 
effort into feature engineering in a situation when there 
is less data. But further study on deep learning 
categorisation would be really interesting as the 
dataset keeps getting bigger. Using a framework to 
reduce parameters might be an avenue for future 
research into improving the CNN model and avoiding 
over-fitting. It is also encouraging to apply the present 
approach to a different subject. 
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