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Abstract - Chest X-rays are a common diagnostic tool for pulmonary and cardiac conditions in hospitals 
because they provide a clear picture of the patient's thorax. With the use of image-to-text radiology 
report production, medical imaging results may be automatically described in radiology reports. There 
are a lot of different pieces of patient data that radiologists may access, but most current systems only 
use the picture data. the objective of developing AI systems with a focus on humans, with the ability to 
learn radiologists' search habits via their eye movements, with the hope of enhancing DL system 
categorisation. The goal of this research is to evaluate several multimodal DL architectures in 
collaboration with trained radiologists to see which ones work best. In particular, this study aims to build 
strong DL models for medical picture analysis by investigating the integration of several data modalities, 
such as eye tracking data and patients' clinical data. A multimodal DL model integrating clinical data and 
chest X-rays (CXRs) was suggested by us. Findings demonstrated that baseline performance was 
unaffected by directly supplying fixation masks of radiologists' gaze patterns as input. Confine Areas 
Using R-CNN (Recurrent Neural Networks). 
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INTRODUCTION 

Medical imaging is extensively used in many areas of 
the health sciences for the purpose of illness diagnosis, 
treatment plan development, patient care, and outcome 
prediction. Based on their findings and other pertinent 
clinical data and information, including patient 
demographics, symptoms, and pre-existing/existing 
medical problems, radiologists are tasked with 
interpreting medical pictures and generating a full-text 
radiology report. In addition to being thorough and 
precise, these reports also need to be prepared quickly 
in a certain manner. When diagnosing lung disorders in 
clinical settings, the first step in the evaluation process 
is often a chest x-ray (CXR), the most used medical 
imaging tool. Typical CXR reports contain "findings" 
and "impressions" sections where radiologists note 
what they think are normal and aberrant aspects of the 
pictures. Writing these in-depth reports is not only a 
challenging and error-prone task, but also demands a 
great deal of expertise and experience. Robots may cut 
down on mundane tasks by giving radiologists a 
baseline to check and adjust as necessary. As a result, 
radiologists would have more time for advanced clinical 
reasoning and ensuring patient safety. 

Automated production of radiology reports describing 
medical image results is the goal of image-to-text 

radiology report creation. The majority of current 
approaches ignore all other patient data available to 
radiologists in favour of analysing images alone. Our 
innovative multi-modal deep neural network 
architecture incorporates both organised patient 
data, such vital signs and symptoms, and 
unstructured clinical notes to produce chest x-ray 
results. There have been efforts to automate the 
production of radiology reports in the area of 
medical imaging informatics [1, 2]. Figure 1 shows 
that most existing deep learning methods rely on 
networks initially developed for picture captioning, 
which include a convolutional encoder and a 
recurrent or transformer decoder. 

 

Figure 1: A framework for generalising image-to-
text 

Despite the fact that the input and output modalities 
are identical across the two tasks, there are 
significant distinctions. Comprehensive and 
including particular medical facts, radiology reports 
are written in the form of full paragraphs instead of 
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simple captions. In addition, there are frequently little 
differences between the picture and the report, which 
makes it difficult to understand medical images. 
Moreover, in order to provide a description of a medical 
image, additional information beyond what is seen in 
the image is typically required. For example, in certain 
instances, when comparing medical imaging between 
males and females, the visual patterns are almost 
same. However, when it comes to patient 
demographics, there are notable variances that might 
affect the evaluation and diagnosis. Present CXR 
report generating approaches, however, ignore the 
non-imaging information available to radiologists during 
image interpretation in favour of only using the 
radiological picture as input.   

LITERATURE REVIEW 

Altwijri, et al (2023) [3] This study's overarching goal 
is to construct a deep-learning strategy for AD severity 
level detection that makes use of pre-trained 
convolutional neural networks (CNNs), especially in 
cases where both the amount and quality of accessible 
datasets are constrained. Here, before training begins, 
the AD dataset is refined using an image processing 
module. Utilising four Kaggle AD datasets—one for the 
normal stage of the disease and three for the mild, very 
mild, and moderate stages, respectively—the 
suggested method was contrasted with two famous 
deep-learning algorithms (VGG16 and ResNet50). 
Because of this, we were able to assess how well the 
classification results worked. We compared the three 
models using six different performance metrics. Our 
method outperforms the competition with a detection 
accuracy of 99.3 percent, according to the results. 

ZainEldin, et al (2022) [4] A convolutional neural 
network (CNN) hyperparameters optimisation approach 
called adaptive dynamic sine-cosine fitness grey wolf 
optimiser (ADSCFGWO) is used by the suggested 
Brain Tumour Classification Model based on CNN 
(BCM-CNN). After hyperparameter optimisation, an 
Inception-ResnetV2 training model is constructed. The 
model uses Inception-ResnetV2, a popular pre-trained 
model, to enhance brain tumour diagnosis. Its output is 
a binary number between 0 and 1, with 0 representing 
normal and 1 representing tumour. The ADSCFGWO 
algorithm is a flexible framework that takes use of the 
best features of both the sine cosine and grey wolf 
algorithms. Because the hyperparameters used for 
CNN optimisation improved the CNN's performance, 
the experimental results demonstrate that the BCM-
CNN classifier performed the best. Achieving an 
accuracy of 99.98% with the BRaTS 2021 Task 1 
dataset was accomplished by the BCM-CNN. 

Ieracitano, et al (2019) [5] This research presents a 
new method for automatically classifying brain states 
using EEG designed characteristics and multi-modal 
Machine Learning (ML). In order to distinguish between 
patients and Healthy Control (HC) individuals, 
electroencephalograms (EEGs) are recorded from 
neurological patients suffering from Mild Cognitive 
Impairment (MCI) or Alzheimer's disease (AD). 

Extraction of higher-order statistics (HOS) from the 
bispectrum (BiS) representation is also done in order to 
take use of the nonlinear phase-coupling information 
found in EEG data. In addition to the five EEG sub-
bands, BiS also produces a second set of 
characteristics called BiS features. Multiple machine 
learning classifiers use the CWT and BiS features to 
conduct 2-way (AD vs. HC, AD vs. MCI, MCI vs. HC) 
and 3-way (AD vs. MCI vs. HC) classifications. A 
balanced EEG dataset consisting of 63 AD, 63 MCI, 
and 63 HC is examined as an experimental 
benchmark. Based on the comparison results, the 
Multi-Layer Perceptron (MLP) classifier is the best 
option when using a combination of CWT and BiS 
features as input. The other models that performed 
better were Autoencoder (AE), Logistic Regression 
(LR), and Support Vector Machine (SVM). As a result, 
cutting-edge deep learning methods are 
computationally demanding, while our suggested multi-
modal ML technique is computationally more efficient. 

Venugopalan, et al (2021) [6] We integrate imaging 
(magnetic resonance imaging, or MRI), genetic 
(single nucleotide polymorphisms, or SNPs), and 
clinical test data using deep learning (DL) to 
categorise individuals into Alzheimer's disease (AD), 
mild cognitive impairment (MCI), and healthy 
controls (CN). For clinical and genetic data, we use 
stacked denoising auto-encoders, and for imaging 
data, we employ 3D-convolutional neural networks 
(CNNs). With the use of the ADNI dataset, we show 
that deep models perform better than shallow ones, 
such as k-nearest neighbours, decision trees, 
random forests, and support vector machines. 
Better accuracy, precision, recall, and meanF1 
scores are achieved by incorporating multi-modality 
data rather than single-modality models. The top 
distinguishing traits found by our models include the 
hippocampus and amygdala brain regions, as well 
as the Rey Auditory Verbal Learning Test (RAVLT), 
which aligns with the known AD literature. 

Aparna, Mudiyala & Rao, Battula. (2023) [7] To 
address this, we use deep features retrieved from 
two deep learning models that have already been 
trained in this study. For the purpose of multi-class 
classification in Alzheimer's disease, the suggested 
models DenseNet121 and MobileNetV2 are used. At 
the beginning of this process, we used CycleGAN 
(generative adversarial networks) to produce 
pictures and expand the dataset by 70%. The 
suggested models were 98.82% accurate. The 
outcomes it produces are superior than those of 
competing models. 

RESEARCH METHODOLOGY 

A Deep Neural Architecture with Multiple 
Modalities 

Figure 2 shows the proposed design of the neural 
network with two independent branches that take X-
ray pictures and the related radiologist reports as 
inputs and produce meaningful representations. 
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There are three primary parts to the text classification 
branch: a multi-head neural attention [8] mechanism, 
Bidirectional Multiplicative Long Short-Term Memory 
(bi-mLSTM) units, and pretrained biological word 
embeddings. Next, state-of-the-art convolutional neural 
network (CNN) models like ResNet, DenseNet, DPN, 
or EfficientNet are used by the image classification 
subfield. A 14-node prediction layer is informed by the 
characteristics that are obtained when the 
representations from both branches are combined in 
the entire network. The sigmoid activation function was 
used to transform each node's score between 0 and 1, 
irrespective of the other nodes' values, since the 
process of categorising radiological tests involves 
several labels. 

 

Figure 2: An outline of the neural network design 
that has been suggested. The blue boxes show the 
parts of our overall design that we put various pre-

trained methods to the test 

Textual Data Sources  

We investigate BioWordVec, BioELMo [9], and 
BioBERT, three pre-trained word embeddings, for text 
representation. Pre-trained across massive biomedical 
datasets, including MIMIC-III clinical notes and 
PubMed abstracts, are BioWordVec FastText word 
embeddings. Predicting neighbouring words from a 
centre word is the goal of the skipgram model. The 
approach aims to maximise the following average log 
probability for a series of words w1, w2,..., wN, 
representing a textual corpus N words, and a c context 
windows size: 

 (1)  

Where the word at position n is represented by wn. The 
following equation technically describes the usual 
definition of p (wn+i |wn) as it applies a softmax 
function: 

 (2)  

This is where W stands for the vocabulary size, V (wI) 
for an input centre word and V (wO) for an output 
context word are vector representations, respectively. 
An n-gram of characters represents each word in the 
FastText word embedding approach, which is an 
extension of the Skip-gram model. 

In the pre-training corpus, the 1 million most common 
tokens make up BioELMo's lexicon. Specifically, the 

RNN architecture makes use of multiply LSTMS 
(mLSTMs) and stacked layers of bidirectional RNNs 
that use long short-term memory (LSTM) cells—a 
specific sort of RNN that will be described later on. The 
2048 channel char-ngram CNN, as shown in Figure 3, 
generates the context-independent token 
representation. Then, two highway layers—an 
expansion of the residual connections concept—
modulate the amount of input signal to be added to the 
output. The input is passed through fully connected 
layers with sigmoid and ReLU as non-linearity 
activation functions, and finally, a linear projection is 
applied down to 512 dimensions. BioBERT makes use 
of a model that was previously trained on generic texts 
found in PubMed abstracts and PubMed central full-
text articles [10], specifically the Bidirectional Encoder 
Representations from Transformers (BERT) model, 
which was developed by Devlin et al. (2018). An 
alternative neural design called the Transformer [8] 
is used by BERT to represent word sequences 
instead of RNNs. This architecture consists of a 
stack of encoder and decoder blocks. 

 

Figure 3: ELMo's design showcases how 
contextual embeddings may be created with 

BiLM 

 

Figure 4: Designing contextual embeddings 
using the MLM task is shown via BERT's 

architecture 

Figure 4 shows the segmented sequence in action, 
beginning with the [CLS] token and continuing with 
the WordPiece tokens divided into two sentences 
each by two [SEP] tokens. The input embeddings in 
a Transformer architecture are the total of the 
embeddings for tokens, segmentation, and 
positions. 

Pre-Training for the Per-Modality Model  

The suggested multi-modal architecture did not start 
with arbitrarily initialised parameters; instead, the 
text and image processing routes were pre-trained 
on huge datasets from a single modality. More 
specifically, each of the CNN architectures 
mentioned was pre-trained and evaluated using a 
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randomly shuffled dataset from MIMIC-CXR and 
CheXpert. 

The Multimodal Eye Imaging (MIMIC-EYE) Database  

Medical pictures, reports, clinical data, eye tracking 
data, gaze, and pupil dilation information are all part of 
MIMIC-EYE [11], a complete dataset that we 
developed for this article. The visual search habits of 
radiologists and the construction of DL models might 
be better understood with the combination of eye 
tracking data with MIMIC modalities. There are 3,689 
tuples in MIMIC-Eye that comprise chest X-ray 
pictures, eye-gaze data, and voice transcripts from 
radiologists. Among them, 1,683 tuples include clinical 
data. 

DATA ANALYSIS 

For our experiments, we used four datasets: two sets 
of frontal chest X-ray images annotated with 14 
observation classes (CheXpert and the original MIMIC-
CXR dataset), one set of full-text radiology reports 
annotated with the same 14 observation classes (a 
subset of MIMIC-III data with ICD labels converted to 
these same classes), and lastly, the Open-i multimodal 
radiography dataset annotated with the same 14 
observation classes annotated with frontal chest X-ray 
images and full-text reports from multiple locations 
collected by Indiana University, along with the same 
fourteen observation classes. General statistics for 
data characterisation are shown in Table 1. 

Table 1: An analysis of the experimental datasets 
from a statistical perspective 

 

Specifically, between 2011 and 2016, the MIMIC-CXR 
dataset has 371,920 chest X-rays linked to 227,943 
investigations involving patients hospitalised to the 
Beth Israel Deaconess Medical Centre. Conversely, 
CheXpert is comprised of 65,240 patients' chest X-rays 
totalling 224,316, acquired from Stanford Hospital from 

October 2002 to July 2017. When conducting 
experiments using image data, such as when 
comparing different CNN architectures or when pre-
training the entire model for multi-modal tests, we 
exclusively used frontal view X-ray images (i.e., 
250,044 instances from MIMIC-CXR and 191,229 
instances from CheXpert). From patient discharge 
notes, MIMIC-III compiles radiological reports linked to 
ICD diagnosis codes; the database is available to the 
public and is used for critical care purposes. After 
matching the 14 labels in the MIMIC-CXR dataset with 
the corresponding set of ICD codes, we used these to 
filter the radiology reports based on the frequency of 
key-phrases such "chest," "lungs," and "thorax." Also, 
we used these for our analysis. The end product was a 
collection of 261,091 text documents. 

Radiography Data Sorting Assignment  

The tests took into account two distinct configurations 
for the radiography chest X-ray picture categorisation 
task: (i) classify X-ray greyscale images trained with 
the combined MIMIC-CXR/CheXpert data using the 
DPN-92, ResNet-50, DenseNet-101, and 
EfficientNet-B5 architectures; and (ii) classify X-ray 
RGB images trained with the combined MIMIC-
CXR/CheXpert data using the ResNet-50, 
DenseNet-101, and EfficientNet-B5 models pre-
trained with ImageNet. 

Table 2: Findings from experiments conducted 
using the MIMIC-CXR/CheXpert dataset 

 

You can see the outcomes of the testing data 
divides in Table 2. Setting (i) is represented by the 
first four rows, and Setting (ii) by the next three 
rows. Results from the first experimental setting 
showed that EfficientNet-B5 performed better across 
the board for almost all measures, while DPN-92 
performed worse across the board for nearly all 
metrics. In the second experimental setting, we 
found that using publicly available ImageNet pre-
trained weights instead of randomly initialised ones 
and using RGB data instead of greyscale or other 1-
channel image data improved the models' overall 
performance. For example, when comparing results 
with settings (ii) and (i), EfficientNet-B5 consistently 
outperformed with settings (ii). Figure 5 shows the 
AUROC values for each class for each model, which 
gives more information. With micro and macro 
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average AUROC scores of 0.869 and 0.792, 
respectively, EfficientNet-b5 surpassed all other 
models. 

 

 

Figure 5: Visual representations of data showing 
how well the experimental environment classified 

MDF-Net: A Network for Multimodal Dual-Fusion  

Following the creation of the MIMIC-Eye dataset, a 
novel architecture known as multimodal Dual-Fusion 
Network (MDFNet) was designed. This network 
combines clinical data with CXR pictures to identify 
lesions. The disparity in dimensions between the two 
modalities is a major obstacle to their effective use; for 
example, clinical data is often represented as a one-
dimensional tensor, whereas photographs are usually 
three-dimensional. We solved this problem by 
introducing spatialization, a method that transforms 
two-dimensional clinical data into three-dimensional 
space. To enable the fusing of pictures and clinical 
data in three-dimensional space, our spatialization 
module has several deconvolutional layers that 
increase the pixel size to the required level for fusion. 
Lesion detection performance and model 
generalisation were both enhanced by 12% on 
Average Precision (AP) when clinical data was 
included, as shown using MDF-Net. Table 3 shows that 
our innovative architecture and spatialization technique 
provide a potential way to use deep learning with 
multimodal data for medical picture analysis. 

 

 

 

Table 3: Findings from the planned MDF-Net 
evaluation 

 

The dual fusion method achieves better 
performance than the baseline MaskRCNN by 
around 12% AP and the MDF-Net(3D) by 4.12% 
when using a score threshold of 0.05 and an IoBB 
threshold of 0.5, according to the results. Table 
entries for enlarged cardiac silhouette, abnormalities 
of the pleura, and pulmonary oedema are as follows: 
Enl. Card. Sil., Pleural Abn., and Pulm. Oedema. 

CONCLUSION 

In conclusion, radiologists may benefit from deep 
learning when it comes to CXR interpretation. In 
order to identify lesions in CXRs, this study looks at 
how to incorporate eye tracking data into DL 
structures. The first findings demonstrated that the 
baseline Mask RCNN was not improved by explicitly 
giving fixation masks of radiologists' gaze patterns 
as input. The great performance of the multi-modal 
end-to-end architecture's constituent components 
was verified. Particularly important to the overall 
model performance was pre-training. The findings 
show that how the models are trained beforehand 
really affects how well they operate. The suggested 
method made use of pre-trained weights from the 
publicly available dataset ImageNet, which does not 
include any medical imaging data. The results on 
the challenge may suggest that the learnt 
characteristics for X-ray image classification are 
comparable to those for everyday picture 
classification. Investigating MRI image 
reconstruction also made use of the same dataset. 
In the future, researchers will try to solve the 
problem of DL methods that generate noisy data 
from raw eye gaze data without taking the 
complexities of human creation into account, which 
makes the data unusable for supervised learning. 
Train on the downstream job of categorising chest 
radiology data to fine-tune both BioBERT and 
BioELMo, instead of utilising them as fixed feature 
extractors. With a fraction of the dimensions of 
state-of-the-art Transformer models, this method 
has shown promise in language modelling problems. 
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