

REVIEW ARTICLE

Study of Political Representations: Diplomatic
Missions of Early Indian to Britain

Journal of
Advances and

Scholarly

Researches in
Allied Education

Vol. 3, Issue 6,
April-2012,

ISSN 2230-7540

Journal of Advances in
Science and Technology

Vol. IV, No. VIII, February-
2013, ISSN 2230-9659

REVIEW ARTICLE

STUDY OF API FOR WEB BASED OS

www.ignited.in

Ruchi Agarwal

w
w

w
.i

gn
it

e
d

.i
n

1

 Journal of Advances in Science and Technology
Vol. IV, No. VIII, February-2013, ISSN 2230-9659

Study of API for Web Based OS

Ruchi Agarwal

Research Scholar, Pacific University, Udaipur, Rajasthan, India

---------------------------♦-----------------------------

SYNCHRONIZATION

Synchronization is a way of easing the handling of web
based operating systems based mobile phones or
other applications like phone book contacts, calendar
events, e-mails, and other such personal data. It also
introduces a possibility for the users to back up data,
by synchronizing information to a remote server. Some
algorithms are only capable of fetching information
from one or more sources and save it on the local
device. Synchronization algorithms do, in addition to
fetching information, also have the capabilities of
pushing local changes back to the original source and
have information on all clients being automatically
updated.

There are different solutions to how synchronization
should be handled in a WEB OS environment; some
systems give the developers no or little additional
functionality, while some provide a whole architecture
with solutions to problems such as secure account
handling, synchronization services and integration into
the standard system.

EB OS

In web OS, synchronization is handled by services
called Synergy Connectors. An implementation of a
Synergy Connector has the capability of synchronizing
contacts, calendar events, or messages. It uses an
Account for accessing the information on a remote
server. The procedure of having a system ac- count
service will allow other services to get access to an
account, and the information it is protecting, without
having to compromise passwords or any other
identification credentials. This could be achieved by,
for example, providing an access ticket that only gives
access to the information that should be accessed by
the requesting service. The service may then use the
other APIs to manage the respective data types; using
the Contacts API for handling contact information, the
Calendar API for event scheduling, and the Message
API for synchronizing message data. A brief overview
of how this works is showed in Figure

Figure 1.1 : Method for synchronize calendar events,
contacts and messages

The service will continue to be able to synchronize
changes occurring on the server for as long as it is
running. This synchronization from a remote server to
the client is usually done in intervals. The intervals
are decided by the underlying API that, based on the
current processor load and network usage, executes
a function registered by the service in order to handle
the synchronization procedure.

As of webOS 2.0, HP/Palm is also opening up their
Synergy service to allow third-party developers to
create connectors for Contacts, Calendars, and
Messages. This means that the user will be able to
synchronize related information with any external site
for which there exists a Synergy connector. [15]

A connector is packaged and distributed as any other
application, through the web OS App Catalog. The
Connector is built as a JavaScript service that creates
an account with the Account Manager and stores the
data objects.

In order to be able to package it as a regular
application it also has to include an ordinary
application; even if the application, in this case, could
consist only of an empty file.

The service inside the connector will register the
event handlers, also called assistants, which will be
responsible for acting when the user commits
changes, updates, removes, or adds new information

Ruchi Agarwal

w
w

w
.i

g
n

it
e

d
.i
n

2

 Study of API for Web Based OS

to a contact. It will also have to implement a trigger
callback, which can be called whenever a
synchronization event has been triggered, either a
manual call by the user or a regular synchronization
update. [12]

ANDROID

Android is quite similar to webOS in that both accounts
and synchronization services can be created. These
services can then synchronize contacts or other
information.

A service, which is called a SyncAdapter in Android,
performs the synchronization in a background thread
while an AccountAuthenticator service handles the
account part. [13] [14]

IOS

Synchronization in iOS is built into the operating
system and can be used with M4E, MobileMe, Gmail,
Yahoo, AOL, and general POP/IMAP, LDAP, CalDAV.
There are no special methods designed for third party
developer to create new synchronization services,
except using the standard APIs for handling and
accessing data.

There is only one address book application available,
and other applications have to go through it in order to
access contact information. Each contact record
contains the source from where the information
originates. This in- formation is mainly used for
displaying the origin for each contact to the user. [15]

ANALYSIS

The web OS platform provides a stable and secure
way of handling user sensitive information, such as
username and password, for accounts used for
synchronizing. Having global secure accounts does
also enable multiple services or applications to share
the account. The implementation steps necessary to
keep this information hidden are however quite
advanced, and additional support on the remote server
might be necessary for it to be completely secure.
There is also no way for the user to know whether the
account information is secure or not, since it all
depends on the account implementation for each
service. Creating a secure way of handling
authentication information, that is both easy to
implement and easy to use, is no easy task, and not
something suitable for this thesis. Further research is
needed for a solution to be developed. [12]

Having a service register a callback method that is
called whenever the device is ready to synchronize
data is an interesting feature, but has to be extended
with more user control. It would be suitable for a
synchronization API to provide additional callback
methods, for example to have services register
methods that would be called whenever a calendar

event has been added to the local calendar, so that it
would be directly pushed out to the remote server.

RESULTS

The proposed synchronization API consists of a few
registration functions for registration methods that
should be called either when the system is ready for a
full scale synchronization, or when an object visible for
the service has been changed. The synchronization
function would only have to be a trigger function, but
the others would have to contain information about the
changed data.

An important design question that has to be answered
is where a service’s functions should be registered.
This could be done either each time the service is
launched, having each service relaunched on system
startup, or registered internally when a service is
installed. In webOS, the function registration occurs
at installation, and since all services is required to be
installed on the device, this is viable even in this
solution. This approach would also not require each
service to be initialized each time the device is
turned on, and instead only initialize and call the
functions when they are needed

MESSAGING API

A study done by the Nielsen Company has shown
that U.S. teens send an average of over 3 000 texts
per month; many teens also say that texting was one
of the main reason for them to purchase a mobile
phone in the firstplace. [16]

There are several other ways of sending messages,
besides SMS, on modern smartphones including
MMS, XMPP and other types of instant messaging
protocols, most of which originate from desktop
computers. These services are similar to each other,
and contain the same basic functionality of sending
short instant text messages. Some of the services
have additional functionality, such as attachments or
support for multiple recipients.

This report will not try to address e-mail under this
section since it is not designed for instant
communication. One common method for allowing
third party applications to send instant messages is
by letting applications launch the official messaging
application; possibly with predefined values, such as
message body and recipient. It is also common to
support the SMS URI scheme, which allows
applications to use links, such as
sms:+15105550101?body=hello%20there, to launch
the standard messaging application.

WEB OS

The webOS API only provides capabilities to pre-
populate fields in the official messaging application.
Unlike iOS and Windows Phone 7, webOS uses the

Ruchi Agarwal

w
w

w
.i

gn
it

e
d

.i
n

3

 Journal of Advances in Science and Technology
Vol. IV, No. VIII, February-2013, ISSN 2230-9659

same API to send all supported types of messages,
including SMS, MMS and IM messages. [18]

Messaging is handled with the Synergy service, which
collects messages from different sources and presents
them through a single interface. Developers can
develop new Synergy Connectors to communicate
with new messaging services, which then allow
programs to access the messages with the same API.
[15]

WAC

The WAC platform provides a number of ways of
handling messages. It supports sending SMS, MMS
and e-mail as well as subscribing to incoming
messages from these services. The services can
however not be extended, as in webOS. WAC also
provides extensive methods for searching, filter and
listing messages based on different parameters.

The API is using the same functions to send all types
of messages but some services only support a subset
of the attributes. Subscriptions of incoming messages
however use separate functions for each message
type.

ANDROID

There are two ways of sending an SMS message
using the Android API; either by creating an Intent and
open the standard SMS application with some pre-
defined values, or by calling the SmsManger API. The
API has support for sending text based messages,
either as a single message or, if the message is too
long, in multiple parts, as well as pure data based
messages to a specified application port. [6] [16]

In addition to SMS there also exists a full SIP stack in
Android. This makes it easier for developers to create
applications that handle VoIP calls, message services
or other things that makes use of SIP. This is however
not comparable to the simple APIs used for sending
SMS. [6].

MAEMO

The Maemo platform, being based on a standard Linux
distribution, provides message handling through the
Telepathy framework. Telepathy is a framework for
managing voice, message, and video communication.
It also supports file transfers, managing contacts, and
online status (presence). Just as webOS Synergy this
allows developers to add support for additional
messaging services without requiring application
developers to explicitly add support for each service.
[13]

Telepathy is built on top of D-Bus (Desktop Bus),
which is an inter-process communication framework,
and all components run as separate processes [14]
[13].

On top there is the Mission Control, which provides the
Account Manager and the Channel Dispatcher. The
Account Manager handles all accounts the user has
set up and can initiate connections. The Channel
Dispatcher is responsible for dispatching applications
upon either remote requests from the different
protocols or local requests from other programs, for
example to start a chat with someone. [15]

Each Telepathy Connection Manager handles
Connections for one or more protocols. A Connection
is the connection to the protocol and it contains
contacts, avatars and other things. It can also be
used to create new channels for text messaging,
calling, file transfers, and so on. Telepathy supports
multiple clients, and lets them use the same
Connections and Channels. [13]

THE W3C MESSAGING API

The Messaging API from W3C defines methods for
creating and sending messages of different types,
including SMS, MMS and e-mail. The API is meant to
complement the previously defined URI schemes.
The API does not handle receiving of messages.

ANALYSIS

Since support for the same feature set that is found in
other mobile operating systems is required, the
Messaging API from W3C and the use of URI
schemes are too limited to be useful. Most of these
required features are listed in Figure 3.2. With
webOS and Telepathy, developers can extend the
messaging platform to support new protocols and
services and still have them integrated into the
standard APIs. This is an elegant solution and the
separation will enable developers to develop services
that handle network communications, while other
third party developers implement messaging
applications that utilizes these services.

Protocols that want to relay their own messages into
the system need to implement this in a service. This
service needs to be able to create native messages
from the protocol’s messages, as well as converting
native messages to the representation used by the
protocol. Services should be careful not to use more
of the phones resources (for example battery, CPU,
and network usage) then needed. XEP-0286: XMPP
on Mobile Devices [16] discusses the XMPP protocol
from a battery usage perspective, noting for example
3G radio levels and compression.

Ruchi Agarwal

w
w

w
.i

g
n

it
e

d
.i
n

4

 Study of API for Web Based OS

RESULT

The resulting API is divided into two layers, as can be
seen in Figure 3.2. The lower layer (service level) is
meant to be used by services to add support for a
messaging protocol. The upper layer (application level)
is to be used by regular applications that create a user
interface for sending messages through the underlying
services.

Figure 3.2 : Message model implementation

CALLS API

Making and receiving phone calls is one of the central
features in mobile phones, and something that all Web
based smartphones have to be able to do. Calling
includes incoming and outgoing calls with audio, and
video, streams, together with other data and events.
Besides traditional telephone calls, calling also
includes other types of calls, such as Skype, SIP and
other instant messaging services.

The tel URI describes telephone numbers as a string
of decimal digits, which uniquely indicates the network
termination point. There are also other URI schemes
for voice communication protocols, including XMPP
and SIP. [12] [8] [13]

The WebOS, iOS and Windows Phone 7 platforms
give developers almost the same functionality with
regard to calls. On all three platforms there is no direct
way for developers to create applications that place
calls. Instead there is functionality for opening the
default call application with information already typed
in. The user must then confirm, often by pressing the
call button, for the actual call to be initiated. On these
platforms there is also no way to react to incoming or
outgoing calls, or retrieve any information about the
cellular network, or even get any information about
earlier calls. WebOS and iOS handle calls by creating
a tel URI and launching it with a special method. In
webOS this is done using the Application Manager,
either by using the open method with the tel URI or
using the launch method with the dialer application’s
id. [14]

In iOS, developer can use the tel URI as a parameter
to the openURL function in the UIApplication class,
which will launch the phone application with the given
phone number already typed in. [15][16]

In Windows Phone 7, third party applications can,
through the PhoneCall- Task class, set the display
name and the phone number shown in the standard
phone application, but not handle a call directly. [17]

SYSTEM INFORMATION

This section will consider information about the device,
operating system and vital hardware parts and how
such information should be accessed. Examples of
such information could be for example current memory
usage, the name and version of the operating system
and what capabilities the device has.

Much of this information can already be obtained by
using standard methods, either by standardized
scripting APIs, as with current time and date, or with
other Internet standards, for example using the
client’s User Agent to transmit operating system
name and version. The W3C Device APIs and Policy
(DAP) Working Group have been working on an API
to gather Systems information and events, as seen
in Section 7. This chapter investigates whether the
W3C standard is sufficient enough for a web based
operating system or if another API will have to add
additional functionality. Note that this section does
not handle local file storage or anything else that
could be abstracted out.

Most operating systems for web OS regard memory
information as something that is supposed to be
handled exclusively by the operating system itself,
and does not like to release that information to any
other application.

That is why Android and iOS for example,
discourage developer from detecting lack of memory,
or calculating the amount of available memory on the
device. This is however not something that could be
assumed for any operating system, and that is why
this kind of abstraction cannot be done in this thesis.

IOS

The iOS API can be used to retrieve information
about the local device by using the UIDevice class.
According to the API it can be seen as a singleton
representation of the device at hand, where
applications can get hold of vital information about
the device itself. [8]

The UI Device class has divided the properties into
five different groups.

Available Features – currently only hold a property to
tell whether multitasking is supported on the device
or not. The reason for not including additional

Ruchi Agarwal

w
w

w
.i

gn
it

e
d

.i
n

5

 Journal of Advances in Science and Technology
Vol. IV, No. VIII, February-2013, ISSN 2230-9659

features is because of the fact that the developer
already knows what brand of device he is working on,
and can make assumption based on that fact. Such
assumptions will not be possible for a more general
API that has to support all possible kind of devices.

Device and Operating System – contains properties for
identifying the device, such as a unique id, the model
name, and what kind of operating system it is running.
Based on this information the application is able to
accommodate its services for the current device.

Device Orientation – enables applications to find out
the device’s physical orientation, in order to tilt the
display to accommodate the user interface with the
user’s view. This category also contains notifications of
device orientation, so that applications can be
automatically notified when the screen needs to be
tilted.

Device Battery State – handles information about the
current state and level of the device’s battery. The
state tells the application whether the device is
currently charging, unplugged or fully charged, and the
level shows the current charge on the battery in
percentage.

Proximity Sensor – indicates whether or not the
proximity sensor senses a close object.

This is what Apple has added through their API, but
much of the needed information is naturally retrieved
by the choice of using objective-C as base.

Monitoring the system and the network connectivity is
something that is already built into objective-C and that
does not require an additional API from Apple. [8]

ANDROID

The Android API utilizes the Java programming
language and, in the same way as iOS, it can get
much system information directly from the language
itself. [9]

As stated in the beginning of this section, the Android
API discourages applications from handling memory
information directly, but instead relies on the operating
system itself. The application can however retrieve the
information, using the ActivityManager, as well as tell
the system that the memory level is too low and that
the system should consider itself as being in a low
memory situation. Note also that, for debugging
purposes, a more detailed view could be retrieved
directly from the kernel. [9]

WINDOWS PHONE 7

Since Windows Phone 7 has a memory cap of 90 MB
on any application that runs on a device with less than
256 MB of total memory, it is necessary to let
applications keep track of memory usage. The
DeviceExtendedProperties class keeps properties for
both the amount that the application is presently using,
the maximum amount of memory the application has
used during its lifetime, and the total amount of
memory on the device. This class can also be used to
get device specific properties such as a unique id, the
manufacturer and name. [3]

WAC

WAC specifies a Device API by having access
methods in the Device Status module fetch
information based on pre-specified attributes, listed in
the Device Status Vocabulary. The vocabulary
groups attributes together in the following groups:

Battery – contains attributes for current battery level,
and whether the battery is being charged or not.

CellularHardware – tells whether cellular hardware is
available or not.

CellularNetwork – contains current signal strength,
roaming capability, and type of operator of the cellular
network in use.

Device – contains information about the device, such
as model number, version and vendor.

Display – equivalent to the non-standardized Screen
Object and contains screen information for the
device.

Memory Unit – tells the total memory size, as well as
the amount of free built in and/or removable memory
on the device.

Operating System – contains information about the
operating system: language, version, vendor, etc.

Web Runtime – represent the current web runtime,
with information about the available WAC version.

WiFi Hardware – tells whether the device can be
used to connect to Wi-Fi networks.

WiFi Network – contains signal strength, network
status and SSID of the current Wi-Fi connection.

PHONE GAP

The Phone Gap framework actually includes an API
for getting system information, even if the API is very
limited. The framework documentation mention
properties for getting the device’s name, unique id,

Ruchi Agarwal

w
w

w
.i

g
n

it
e

d
.i
n

6

 Study of API for Web Based OS

platform, operating system version, and version of the
Phone Gap API available.

The idea behind the Phone Gap information API is that
the developer will only support known devices that are
known to have the features required to run a specific
application. This makes developing for a pre-specified
platform, for example IOS, quite easy, since all IOS
devices have very similar hardware features. Problems
will however arise when developing a multi-platform
application, where availability of some hardware
component might not be certain and the device has to
manually check for it. That is not possible with the
Phone Gap solution. [11]

W3C AND THE SYSTEM INFORMATION API

The System Information API divides all properties and
information into a number of different areas, all with
restricted access level that each application has to
receive permission from the user in order to access,
based on the characteristics of the properties. The
standard is still only a draft, but in the latest public
version, dated February 2nd 2010, the different areas
are described .The early work of the System
Information API did also include battery status
properties, but these have been moved to the Battery
Status Event Specification. The specifications do not
only include methods for fetching battery information,
but also introduce a way of setting an event listener
that will receive continues updates of battery level and
charging status

ANALYSIS

The handling of system information on current online
devices are all limited or simplified by assumptions
made by the targeted platform. In the case of Windows
Phone 7, there is no way for applications to ask the
device if a GPS chip is available or not. The developer
can however assume that a GPS is always present on
a Windows Phone 7 device, since that is one of the
requirements made by Microsoft when selling a
license. Some simplifications can be drawn when
developing applications for Android and iOS as well.
These kinds of solutions are however only viable for
platform dependent development. When developing
the same applications for multiple platforms, it quickly
becomes infeasible to handle pre-defined rules about
each platform. [13]

The only solutions studied in this paper that do not rely
on presumptions made according to the operating
system are WAC and the W3C proposed standard.
When comparing the two, they both have quite similar
properties and work in the same way. Note that the
W3C proposal does not state how to access the
device, but only provides information about the device
and its parts.

RESULT

The WAC API and the W3C proposed standard
complement each other well. An operating system
providing support for both of these would cover all
necessary properties for application development in
modern smartphones. It would provide a fully usable
interface for developing web applications that covers
everything from system monitoring to accessing
information about input and output devices.

MULTITASKING

According to Maximiliano Firtman’s definition [16] a
device needs, among other things, a multitasking
operating system in order to be categorized as a
online or web OS. Other definitions might have a
different opinion, but it is clear that multitasking is one
of the most important features in modern and all
operating systems studied in this paper have, if not full
then at least some, multitasking capabilities.

There are different kinds of multitasking, and almost
all vendors have come up with different solutions to
balance the battery life, functionality and
userfriendliness in their operating system.
Applications can be minimized, and the user can
switch between them, or a process might be running
completely in the background where they might
always be able to get some processor power. Some
operating systems have an automated system for
shutting down applications when processing power
and memory is starting to get low. [14]

IOS

As of IOS version 4.0, having an application running
in the background is no longer limited to first party
developers. The developers do however need to
work through specially designed APIs to achieve this
functionality, and even then the background
applications have restrictions that limit their access
to the phone’s resources.

The applications that need support for accessing
resources while running in the background have to
register to some of the available services to handle
the multi-threading for them. [15] If all an application
needs is to finish its current task, like downloading a
file, the application can register the task with the
Task Completion service and the task could finish
even if the application is put to the background.
When the task has completed, the application will
receive a notification to display to the user.

If all an application needs is to finish its current task,
e.g. downloading a file, the application can register
the task with the Task Completion service and the
task could finish even if the application is put to the
background.

When the task has completed, the application will
receive a notification to display to the user. Another
service, called Background audio, allows

Ruchi Agarwal

w
w

w
.i

gn
it

e
d

.i
n

7

 Journal of Advances in Science and Technology
Vol. IV, No. VIII, February-2013, ISSN 2230-9659

applications to continue playing audio when put to the
background. This service is commonly used to
implement an Internet radio or a music player that
needs to be able to play audio even when the user has
switched application.

For applications that need to handle incoming network
messages, to implement a messaging service, like
Skype or GTalk, they may use the service called
Messaging service. Here, developers can register a
message handler that will receive new incoming
messages of a certain type and notify the user
accordingly. It is also possible to enable a timed event
to occur even in a background application by calling
the service Push Notification. The service will alert the
application when the timer has run out and execute the
timed routine.

The last background service available for applications
is the Background Location Service, which enables
applications to track the user’s movement by enabling
the GPS even for programs running in the background.
[17]

By having such restricted background access, the
operating system does not need to implement a full
featured thread scheduler and can save both
computation power and battery life, but still give the
user the feeling of a multitasking operating system.

As of iOS 4 the operating system also includes an
application switcher where users can bring up a list of
hibernated applications and let the user browse
between them. There is however no native API for
letting developers create their own application
switcher, manage installed applications or list the
services running on the device. [19]

ANDROID

Android has a different approach when it comes to
multitasking and switching between applications. The
idea is that the user does not have to know whether an
application has turned off or is still left in the memory;
the operating system will handle that automatically.
That is also why the Android operating system does
not include an application switcher that lets the user
switch between open applications.

Multitasking in Android basically works by having the
operating system not turning off applications when the
user switches to a new application. Instead, it leaves
the hibernated application in the memory, until the
memory is needed by another application. By letting
the applications stay in memory, the applications will
be much faster to start up again. Android gives
developers the ability to register its applications as
services, giving the application access to actually
execute code while running in the background.

Since Android 1.5, services that run in the background
are limited to using 5-10 percent of the total CPU. This
increases both the availability of the operating system
but also the battery life of the device. [14]

To free up memory, as more and more applications
are left in memory, Android implements an Out of
Memory (OOM) killer. The routine works by having two
memory thresholds. When the first threshold is met,
the background processes are notified and asked to
save their state in the persistent storage. When the
applications have saved their state, they return back to
the OOM routine which, when the second threshold
has been reached, starts to turn off the non-critical
applications whose state has been reported as
saved. Since all applications save their state, they will
be able to return to the same state as before when
launched the next time. This means that the only
thing differentiating between an application that has
been turned of and an application that is still running
is the time it takes to launch the application. [11]

API

The Android API for interacting with running
applications and services, the ActivityManager API,
separates applications and services by defining
separate namespaces and separate methods for
each of them. The API provides methods for fetching
a list of running applications or services or, if the
application has got permission from the user, shut
down a specified application by terminating its
processes. It is also possible to get a separate list for
applications that are in an error state, or a list of the
most recently started applications that include
applications that are no longer running.

The API can be used not only for listing running
applications, but also to fetch more specific
information about each running process; for example
the process’ PID, its memory usage and how long it
has been running for. An application that is in an error
state contains a little bit more information, such as
the error message and a stack trace.

WINDOWS PHONE 7

Multitasking and having applications working in the
background is, in Windows Phone 7, limited to
selected third party and first party applications only.
Regular applications are limited to receiving and
sending notifications which means that there is, for
example, no way for those applications to continue
playing music when running in the background. The
application can use the received notifications in order
to; for example, change the icon tile to display the
information dynamically. Microsoft had said that they
have plans of extending the multitasking capabilities
for third party applications, as well as introducing
ways of switching between open applications, but has

Ruchi Agarwal

w
w

w
.i

g
n

it
e

d
.i
n

8

 Study of API for Web Based OS

yet to define how. That is also why their API cannot be
studied in more detail in this thesis.

When a new application is launched, the old
application will get a notification asking it to save its
current state in the device’s memory and hibernate.
The procedure is similar to the solutions in iOS and
Android where applications can be turned off by the
operating system to free up used memory blocks.

Saving the state of each application will enable
applications to resume in the same state as when the
operating system turned them off. Windows Phone 7
does not include any native APIs for application
management; this is only supposed to be handled by
the operating system or first party applications.

WEB OS

The webOS approach to multitasking is also a bit
different. Here the user has full control over which
applications that are running and may turn them off at
any time. The user interface consists of cards, which is
basically a rectangular screenshot of the application
that the user may flick through.

To turn off an application, the user simply grabs the
application’s card and throws it off the screen. [17]

Open web applications that are running in the
background are limited to only accessing operations
that are considered to use a moderate amount of
memory and CPU to keep the battery from draining too
fast. Constant data requests, or accelerometer access,
are examples of prohibited usage.

Applications using the PDK are also a bit more
restricted when running in the background and may no
longer allocate more memory or use the graphic APIs.

Applications that are turned off by the user are
typically completely shut down by the operating
system, but the user also has the possibility of letting
the application stay alive even after it has been
terminated. This is done by putting the application icon
in the webOS Dashboard, making it a Dashboard
Application that, if implemented to support it, may run
as a service even after it has been turned off. [17]

If the user has too many application cards open, and
the operating system runs out of memory, the user will
be prompted with a warning and forced to turn off
applications in order to be able to continue using the
device. This leaves the user in full control over which
applications that should continue to run, and which
should be shut down. However, there is no indication
of how much memory each application is allocating
and the user might close low memory applications
unnecessarily, before finding an application that has
allocated a larger amount of memory. [14]

MAEMO

Multitasking in the Maemo operating system is more
similar to personal computer’s operating systems and
is one of the few, or possibly the only, operating
system for smartphones to implement real memory
swapping as well as a desktop like interface for
application switching. It also includes full multi-task
capabilities for minimized applications, enabling all
applications to continue to run even when the user has
minimized them or opened some other application.
The applications receive notifications, stageActive and
stageDeactive, when minimized or activated so they
can optimize the CPU and memory usage accordingly.

ANALYSIS

As seen in the previous sections, there are a wide
variety of solutions to multitasking on different OS
platforms. The problem whether to minimize or close
applications could be solved in different ways and is
something that should be up to the platform to
decide; it could be seen as a question that depends
too much on memory capacity of the device and the
implementation goals of the vendor for it to be
answered in this thesis. Guidelines and general tips
on what kinds of simplifications that could be made
when exclusively working with web based
applications however, could fit the scope, as well as
a small proposal on which services should be
provided in order for the applications to work in the
background and optimize memory usage.

Something common with all solutions, previously
mentioned in this chapter, is that an API for getting
information about installed and running applications
is practical to allow applications to handle listing,
switching, launching, closing, installing, and removal
of applications. The question in this case however, is
whether the operating system should allow such
tasks to be carried out by web applications at all, or if
this is something that is best handled in the
operating system itself. Web pages are normally
sandboxed inside the web browser and not aware of
any other open applications or tabs. Introducing such
a feature would break this fundamental security
feature that the Web is built on today [18]

Installing applications, such as extensions and add-
ons, is something common in modern desktop
browsers and even some mobile browsers, today
and the installation schema should be very similar.
By comparing the installation procedures of installing
applications on smartphones with installing
extensions in browsers, it can quickly be concluded
that the cases are very similar. This means that
installing applications could very well adopt a similar
behavior to how extensions are currently handled
today.

Removing extensions is another question, since
removing an application or extension means
exposing installed application data to other
applications, which could be a serious problem of
integrity. Browsers have dealt with this problem by

Ruchi Agarwal

w
w

w
.i

gn
it

e
d

.i
n

9

 Journal of Advances in Science and Technology
Vol. IV, No. VIII, February-2013, ISSN 2230-9659

not allowing extensions to list or remove other
extensions and most OS only allow the built in
applications to handle such tasks. [13]

Since web based scripts are running in a sandboxed
environment, there is currently no API for handling
application switching or list any running applications,
with the current web standards, at least not by the
definition of an application used in this thesis. It is
possible for applications to get information about what
is happening, for example if an application has lost
focus and been minimized or if it is about to be shut
down. But having applications fetching information
about other running applications is a question of
integrity and in order to find a definite answer, further
studies are needed and the question is unfortunately
not something that could be answered in this thesis.
This means that a safe way of proceeding with this
could be possible.

RESULT

Multitasking is required in modern OS, and everybody
is doing it to some degree. To maintain full
compatibility with current web applications the
operating system needs, at least regarding this topic,
to function as a standard web browser.

Since compatibility with existing web applications is
wanted, all scripts in the application need to continue
to run even while the application is not active.

This does not mean that full priority needs to be given
to the background applications. A smaller subset of the
full performance should be sufficient, just as is done in
webOS. [17]

It is not necessary to render anything for the
applications that are not visible. If a thumbnail of the
application is needed, one can be taken when the
application is going out of view. [19]

Web applications that supports being able to be
automatically terminated by the operating system, and
then resumed in the same state, can be created today
by using onLoad and onUnload/onBeforeUnload
events. Applications can receive updates for when
they are being started or shut down. Since support for
pre-existing web applications is wanted, it is hard to
implement the solutions that Android, Windows Phone
7, and iOS have implemented.

The solution in webOS however, is reasonable.

Swapping out memory to the hard drive, as has been
done in desktop operating systems for many years, is
a solution that has proven to work well in Maemo.
Moving the memory swapping up the chain, into the
web browser, would probably mean that some

heuristics could be applied to make it more effective.
[11]

REFERENCES

[1] W3C. HTML Living Standard – web storage.
http://www.w3.org/TR/ webstorage/ (2011-05-
06), 2011. 8

[2] Nikunj Mehta, Jonas Sicking, Eliot Graff,
Andrei Popescu, and Jeremy Orlow. Indexed
database api.
http://www.w3.org/TR/IndexedDB/ (2011-05-
18), 2011. 8

[3] Arun Ranganathan and Jonas Sicking. File
api. http://www.w3.org/ TR/FileAPI/ (2011-05-
18), 2010. 8, 80

[4] Eric Uhrhane. File api.
http://www.w3.org/TR/file-writer-api/ (2011-
05-18), 2011. 8, 80

[5] Anne van Kesteren. Xmlhttprequest – w3c
candidate recommendation 3 august 2010.
http://www.w3.org/TR/XMLHttpRequest/
(2011-05-18), 2010. 9

[6] Anne van Kesteren. The websocket api –
editor’s draft 12 may 2011.
http://dev.w3.org/html5/websockets/ (2011-
05-18), 2011. 9

[7] Ian Hickson. Html5 web messaging – editor’s
draft 12 may 2011.
http://dev.w3.org/html5/postmsg/ (2011-05-
18), 2011. 9

[8] Ian Hickson. Video conferencing and peer-to-
peer communication.
http://www.whatwg.org/specs/web-
apps/current-work/complete/video-
conferencing-and-peer-to-peer-
communication.html (2011- 05-19), 2011. 9,
78

[9] Stuart Robinson. Multi-core processors to
penetrate 45 percent of smartphones by
2015. StrategyAnalytics, Jan 2011. 10

[10] Ian Hickson. Web Workers. Web Workers -
W3C Working Draft 10 March 2011, Mar
2011. 10

[11] Google Inc. Google chrome os.
http://www.google.com/chromebook (2011-
05-12), May 2011. 11

http://www.w3.org/TR/
http://www.w3.org/TR/IndexedDB/
http://www.w3.org/
http://www.w3.org/TR/file-writer-api/
http://www.google.com/chromebook

Ruchi Agarwal

w
w

w
.i

g
n

it
e

d
.i
n

10

 Study of API for Web Based OS

[12] Amazon. Amazon – samsung series 5 3g
chromebook. http://www.
amazon.com/gp/product/B004Z6NWAU (2011-
05-04), 2011. 12, 81

[13] Maximiliano Firtman. Programming the Mobile
Web. O’Reilly Media, Inc., first edition, 2010.
12, 64, 66, 68, 74, 75

[14] The PhoneGap project. PhoneGap –
supported features. http://www.
phonegap.com/features (2011-05-13), 2011.
12

[15] WAC Application Services Ltd. WAC – About
WAC. http://www.
wacapps.net/web/portal/about (2011-05-23),
2011. 13

[16] WAC Application Services Ltd. WAC – FAQ.
http://www.wacapps. net/web/portal/faq (2011-
05-23), 2011. 13

[17] WAC Application Services Ltd. WAC –
Membership. http://www.
wacapps.net/web/portal/membership (2011-
05-23), 2011. 13

[18] HP. Application framework and OS.
https://wiki.mozilla.org/Labs/
Contacts/ContentAPI (2011-03-20), 2011. 14

[19] IDC. Worldwide smartphone market to grow by
nearly 50 percent in 2011. IDC Press Release,
Mars 2011. 18

[20] Nathan Olivarez-Giles. Nokia to cut 7,000
jobs, stop developing symbian operating
system. Los Aneles Times, April 2011. 18

[21] Google Inc. Using the Contacts API.
http://developer.android.com/
resources/articles/contacts.html (2011-05-09),
2010. 20, 21, 81

[22] D. Crockford. The application/json Media Type
for JavaScript Object Notation (JSON). RFC
4627 (Informational), July 2006. 22

[23] HP. Contacts.

https://developer.palm.com/content/api/referen
ce/datatypes/contacts.html (2011-04-15),
2011. 22

[24] HP. People Picker.
https://developer.palm.com/content/api/
reference/services/people-picker.html (2011-
04-15), 2011. 23

[25] Richard Tibbett. Contacts API. Contacts API -
W3C Working Draft 09 December 2010, 2010.
23

[26] Richard Tibbett. Contacts API. Contacts Writer
API - W3C Editor’s Draft 04 October 2010,
2010. 23

[27] Michael Hanson. Labs/Contacts/ContentAPI.

https://wiki.mozilla.
org/Labs/Contacts/ContentAPI (2011-03-20),
2010. 23

http://www/
http://www/
http://www/
http://www.wacapps/
http://www/
https://wiki.mozilla.org/Labs/
http://developer.android.com/
https://developer.palm.com/content/api/reference/
https://developer.palm.com/content/api/reference/
https://developer.palm.com/content/api/
https://wiki.mozilla/

