

Journal of Advances in Science and Technology

Vol. IV, No. VIII, February-2013, ISSN 2230-9659

ANALYSIS ON GREYISH RELATIONAL EVALUATION TO VIEW THE DEAL PROCEDURE BOUNDARIES FOR WIRE ELECTRO DISCHARGE MACHINING (WEDM)

Analysis on Greyish Relational Evaluation to View the Deal Procedure Boundaries for Wire **Electro Discharge Machining (WEDM)**

M. K. Thiagarajan

Research Scholar, CMJ University, Shillong, Meghalaya, India

Abstract - This paper presents a viable approach to streamline transform parameters for Wire electro discharge machining (WEDM).wedm is broadly utilized as a part of hardware and kick the bucket businesses. Accuracy and perplexing machining are the qualities. While machining time and surface quality still stays as major tests. The principle target of this study is to acquire higher material removal rate (MRR) and lower surface roughness (SR). Ton, T off, Connected current, Gap voltage, Wire tension and wire bolster rate are the six control variables taken each at different levels. Since the technique has numerous exhibition attributes, the ash social examination is utilized. The ash social evaluation standardizes the repudiating exhibition files. From eight trials dependent upon the orthogonal exhibit of L8 the best synthesis of parameters were discovered. Contrasted and Taguchi's system the proposed strategy is more logical. The trial effects affirm that the proposed technique in this study viably enhances the machining exhibition of WEDM process.

INTRODUCTION

Wire EDM: Wire Electro Discharge machining (WEDM) is one of the paramount non-universal machining courses of action which are utilized for machining demanding to machine materials like composites and between metallic materials. Perplexing profiles utilized as a part of prosthetics, bio-therapeutic requisitions can likewise be finished in WEDM. WEDM includes physical complex and synthetic technique incorporating warming and cooling. The electrical discharge vigor influenced by the sparkle plasma force and the releasing time will verify the crater size, which in turn will impact the machining effectiveness and surface quality With the presentation and expanded utilization of fresher and harder materials like titanium, solidified steel, towering quality temperature safe combinations, strand strengthened composites and earthenware production in aviation, atomic, rocket, turbine, auto, device and expire making businesses, a distinctive class of machining process has been rose. Better completion, flat tolerance, higher creation rate, scaling down and so on are additionally the present requests of the assembling businesses.

Surface roughness is a nexus element in the machining methodology while acknowledging machining exhibition. Surface roughness is a measure of the mechanical nature of a component that extraordinarily impacts assembling cost and quality. Additionally, material removal rate (MRR) which demonstrates the transforming time of the work piece is a different essential element that significantly impacts processing rate and cost. Fitting choice of process parameters is crucial to get exceptional surface complete and higher MRR. Written works overview: For verifying the optimal parametric settings, parcel of work has been finished in the designing configuration. In any case for the most part every last one of them concentrated on a solitary reaction issue. Then again, the WEDM courses of action are having a few significant exhibition qualities like MRR, Sr, and so on. The optimal parametric settings regarding distinctive exhibition qualities are diverse. The determination of the best blend of the methodology parameters for an optimal machining exhibition includes diagnostic strategies.

Scott et al have exhibited a detailing and result of a multi target enhancement issue for the determination of the best parameter settings on a WEDM machine. The measures of exhibition for the model were MRR and surface quality. In that study, a factorial outline display has been utilized to anticipate the measures of exhibition as a capacity of a mixed bag of machining parameters. Lin displayed the utilization of ash social review to the machining parameter streamlining of the Edm technique. Optimal machining parameters setting for WEDM still has some trouble.

It may be noted that the vast majority of the common methodologies have utilized complex numerical or

statistical techniques for example ANN, double reaction approach, hereditary calculation, reproduced strengthening, direct or non straight or progressive customizing. The aforementioned methodologies are challenging to accomplish by people with small foundation in mathematics/statistics and so are of small viable utilization. Ramakrishnan et al likewise fails to offer the path to change over various destinations into a solitary goal arrangement however the technique is generally basic.

GREYISH RELATIONAL ANALYSIS

The Greyish Relational Analysis (GRA) connected with the Taguchi strategy speaks for a rather new approach to improvement. The light black speculation is dependent upon the erratic doubt of minor examples which improved into an assessment method to tackle certain issues of framework that are unpredictable and having deficient informative content. A System for which the significant informative content is totally known is a "white" framework, while a framework for which the applicable qualified information is totally unfamiliar is a "dark" framework. Any framework between the aforementioned breaking points is a "light black" framework having oppressed and constrained qualified information. Greyish Relational Analysis (GRA) a standardization assessment strategy is developed to settle the entangled multi-exhibition aspects advancement viably.

Information Pre-Processing: Data Pre-Processing is typically needed, since the extent and unit in one information succession might contrast from others. It is additionally essential when the arrangement dissipate extent is too great, or when the headings of the focus in the groupings are distinctive.

Larger the better value

$$X_{ij} = \frac{Y_{ij} - \min_{i} Y_{ij}}{\max_{i} Y_{ij} - \min_{i} Y_{ij}}$$

Smaller the better value

$$X_{ij} = \frac{\max_{i} y_{ij} - y_{ij}}{\max_{i} y_{ij} - \min_{i} y_{ij}}$$

Where y^{ij} is the i^{th} performance characteristic in the j^{th} experiment .max $_i$ y_{ij} and min $_i$ y_{ij} are the maximum and minimum values of i¹ performance characteristic for alternate j, respectively.

By normalizing, grey relational co-efficient (GRC) is calculated as

$$\zeta_{IJ} = \frac{\min_{i} \min_{j} \left| X_{j}^{o} - X_{ij} \right| + \zeta \max_{i} \left| X_{j}^{o} - X_{ij} \right|}{\left| X_{j}^{o} - X_{ij} \right| + \zeta \max_{i} \left| X_{i}^{o} - X_{ij} \right|}$$

 X_j^o is the ideal normalized result for the j^{th} performance characteristic. The ideal normalized value is the maximum of the normalized S/N ratio since large normalized S/N ratio is preferred. ζ is the distinguishing or identification co-efficient. Generally it is taken as 0.5. The grey relational grade (GRG) is obtained by averaging the grey relational co-efficient corresponding to each performance measure.

Here WK denotes the normalized weight factor and taken as 1. The grey relational grade γ_i represents the level of correlation between the reference sequence and the comparability sequence. If the two sequences are identical, then the value of grey relational grade is equal to 1. The grey relational grade also indicates the degree of influence that the comparability sequence could explain over the reference sequence.

EXPLORATORY SETUP

The tests were performed on "Electronica" "Eco cut" model. The material utilized is Inconel 718 compound and metal wire of 0.25 mm measurement is utilized as cathode. Six parameters were chosen and the remaining process parameters are kept steady all through the study. The steady parameters are flushing force of 10 lpm, servo food of 2030 mpm, and de-ionized water is utilized as di-electric. The surface roughness is measured in Ra by utilizing surf coder Se 1200 surface roughness instrument. The constants for surf coder through out the estimations were standard Iso 97r, 0.8 mm cut-off, minimum tally of 0.001µm .For every blending, what added up to 3 readings were taken at irregular to get the Ra quality. Material removal rate (MRR) has been figured from the contrast of weight of work piece prior and then afterward the test.

$$MRR = \frac{W_i - W_f}{\rho t} mm^3 / \min$$

Where Wi is the starting weight of the work piece in grams, Wf is the last weight of the work piece in grams "t" is the machining time in minutes, P is the thickness of the material. The weight of the work piece has been measured in an exactness computerized offset meter (Model: Dhd-200 Macro single skillet DIGITAL perusing electrically operated

logical equalize made by Dhona Instruments) which can measure up to the correctness of 1/104

grams and this gives the wanted correctness.

ANALYSIS AND DISCUSSION OF **EXPERIMENTAL RESULTS**

In the WEDM, lower surface roughness and higher material removal rate are the indications of better performance. For data pre-processing in the grey relational analysis process, surface roughness is taken as the 'smaller the better' and material removal rate is taken as the 'larger the better'. L8 orthogonal array (OA) is used for the design of experiments. Initially, the S/N ratios for surface roughness and MRR are computed using equations (8). Using equations (9) the S/N ratios are normalized and shown in below Tables.

Experiment number	Ra (1)	Ra (2)	Ra (3)	L _{ij}	S/N ratio Surface roughness η _{ii}	Normalized S/N ratio Surface roughness	GRC Surface roughness
1	2.4	2.5	2.2	5.61	-7.44	0.89	0.6875
2	2.1	2.2	2.4	5.00	-6.99	0.84	1.0000
3	2.6	2.3	2.5	6.1	-7.85	0.94	0.3750
4	2.4	2.25	2.3	5.37	-7.3	0.877	0.7687
5	2.2	2.4	2.5	5.61	-7.49	0.9	0.6250
6	2.7	2.6	2.5	6.7	-8.3	0.99	0.0625
7	2.7	2.8	2.3	6.8	-8.32	1.0	0.0000
8	2.4	2.7	2.6	6.6	-8.19	0.98	0.1250

Table: Computed and Normalized S/N ratio values for surface roughness

Experiment number	MRR (1)	MRR (2)	MRR (3)	L _{ij}	S/N ratio Material Removal Rate η _{ij}	Normalized S/N ratio Material Removal rate	GRC Material Removal rate
1	26	25	28	1.45x10 ⁻³	28.38	1.7347	0.000
2	29	27	28	1.278x10 ⁻³	28.93	1.7683	0.2476
3	32	30	34	9.842x10 ⁻⁴	30.06	1.8372	0.7553
4	31	35	32	9.444x10 ⁻⁴	30.24	1.8483	0.8371
5	30	36	32	9.53x10 ⁻⁴	30.2	1.8459	0.8194
6	29	28	31	1.168x10 ⁻³	29.32	1.7921	0.4229
7	36	32	34	8.71x10 ⁻⁴	30.6	1.8704	1.0000
8	33	34	30	9.648x10 ⁻⁴	30.15	1.8429	0.7973

Table: Computed and Normalized S/N ratio values for material removal rate

Experiment number	GRC Surface roughness	GRC Material Removal rate	GRG	Rank	S/N ratio for GRG
1	0.6875	0.000	0.3437	8	-9.2764
2	1.0000	0.2476	0.7476	2	-2.5266
3	0.3750	0.7553	0.5651	4	-4.9574
4	0.7687	0.8371	0.8029	1	-1.9067
5	0.6250	0.8194	0.7222	3	-2.8268
6	0.0625	0.4229	0.4854	6	-6.2780
7	0.0000	1.0000	0.5000	5	-6.0205
8	0.1250	0.7973	0.4611	7	-6.7240

Table: Grey Relational co-efficient and Grey Relational Grades

AFFIRMATION TESTS

Once the optimal level of the methodology parameters is recognized, the last step is to anticipate and validate the change of the exhibition measures utilizing the optimal level. Provided that the anticipated and watched S/N proportion values for distinctive reactions are near one another, the adequacy of the optimal condition can then be guaranteed. To anticipate the envisioned change under the picked optimal conditions, the S/N proportion values for Mrr and Sr are ascertained utilizing the model for optimal condition. It might be noted that the request of quality of the impacts of control elements on the GRG worth is B, C, A, F, E, & D. As a higher GRG esteem suggests an improved quality level, the optimal condition is A2, B4, C4, D2, E1 and F₁. The effect of the affirmation tests brought about the change of 0.1134 in GRG, after validation.

CONCLUSION

To aggregate up the conclusion drawn from the exploration:

- utilization Gra approach The analysis dependent upon the orthogonal exploratory outline. To other identified analyses, this strategy is straightforward.
- The analysis figures the best variable fusion and the expected qualities are closer to the watched values.
- 3. The trial utilization L8 orthogonal shows.
- This methodology effectively changes over the various exhibition attributes into the Grg, subsequently streamlining the examination.
- The effects show that the optimal condition dependent upon the strategy can offer better on the whole quality.

4 www.ignited.in

The request of quality of impacts of control components are Pulse on time, Pulse off time, Voltage, Wire encourage rate, Wire tension, and Applied current.

considering multi-response problems in the Taguchi method - a review. Int J Mater Process Technol 132: 340-344.

REFERENCES

- Ho.K.H .Newman S.T..Rahimiford S,.Allen R.D (2004) State of the art in wire electrical discharge machining. Int J Mach Tool Manuf 44: 1247-1254.
- Scott D, Boniya S, Rajurkar KR, (1991) Analysis and optimization of parameter combination in wire electrical discharge machining. Int J Prod research 29 (11):2189-2207.
- Lin JL, Wang KS, Yan BH, Tarang YS (1998) Optimization of the multi-response process by the Taguchi method with grey relational analysis. J Grey syst 10 (4) :355-370.
- Ramakrishnan R, Karunamoorthy L (2006) Multi response optimization of wire EDM operations using robust design of experiments. Int J Adv Manuf Technol 29:105-112.
- Huang J.T,.Liao Y.S (2003) Optimization of machining parameters of wire- EDM based on grey relational and statistical analysis.Int J.Prod .Res 41 (8) : 1707-1720.
- Guo.H Fuzzy (1985) Introduction to co-efficient of grey relational grade. Fuzzy mathematics, special issue on Grey systems, 5 (2): 55-58.
- Kuo.C.F.J and Wu.Y.S (2006) Optimization of the film coating process for polymer blends by the grey based Taguchi method. Int J Adv Manuf Technol. 27: 525-530.
- Lin C.L. and Lin. J.L (2002) The use of orthogonal array with grey relational analysis to optimize the EDM process with multiple performance characteristics. J Mater process Technol 142: 237-244.
- Tosun.N. (2006) Determination of optimum parameters for multi-performance characteristics in drilling by using grey relational analysis. Int J Adv Manufacturing technology. 28: 450-455.
- Nalbant.M,Gokkaya.H andSur.G. Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. J Mater dsn 28: 1379-1385.
- Yang.H. and Tarang Y.S. (1998) Application of the Taguchi method to optimization of submerged arc welding process. J Mater and Manuf process 13 (3): 455-467.
- Jeyapaul.R. Shahabudeen.P. and Krishniah.K.(2003) Quality management research by