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INTRODUCTION 

The first major attempt on excimer formation utilizing the 
DBD technology was made by Kogelschatz and his 
coworkers in 1988 [Eliasson and Kogelschatz, 1988; 
Eliasson et al., 1988; Kogelschatz, 1990; Gellert and 
Kogelschatz, 1991; Kogelschatz, 1992]. They realized that 
the excimer known from electron beam experiment can 
also be formed in silent discharges, if at least one of the 
electrodes is made transparent to the excimer formation. It 
was shown that a large number of different excimers can 
be generated in a simple gas discharge with a DBD. The 
effect of geometry, different gas mixtures on excimer 
formation, possibility of obtaining different wavelengths, 
physical parameters of micro discharge and reaction 
kinetics of excimer formation in DBD have also been 
investigated. It is possible to excite excimer radiation in 
VUV/UV or even in the visible range. Spectroscopic 
investigations were performed with these sources. 
Considering the large number of known excimers, one is 
led to believe that an efficient radiation source for any 
desired spectral range can be developed. Model 
calculations describing electrical breakdown and micro 
discharge formation were also presented [Eliasson and 
Kogelschatz, 1991; Eliasson and Kogelschatz, 1994]. 

The term excimer (excited dimmer) [Stevens and Hutton, 
1960] was initially proposed by Stevens and Hutton in 
1960. The acronym excimer was basically applied to the 
unstable molecular complexes formed from an atom in the 
ground state and another one in an electronically excited 
state. Although Basov and coworkers first demonstrated an 
excimer laser [Basov et al., 1970] and later, several 
workers [Rhodes, 1974; Rhodes, 1979; Lakoba and 
Yakovlenko, 1980; Smirnov, 1983] carried out 
investigations on the properties of an excimer molecule on 
a large scale. But, it was Tanka [Tanka, 1955] who first 
demonstrated that rare gas excimer can be formed in 
electrical gas discharge excited by fast pulses, microwaves 

or silent discharge. The second excimer continua of rare 
gas had also been obtained by Tanka in a much simpler 
configuration used as spectroscopic light source for 
absorption measurement in vacuum ultraviolet spectral 
range. These devices could be regarded as the first 
excimer UV optical sources, although they were not sealed 
at that time. Further work on spectroscopic light sources 
using rare gas excimer emission was continued by Soviet 
researchers [Volkova et al., 1984]. Investigations were 
extended to obtain excimer emission from rare gas halides 
[Shevera et al., 1980] and mercury halides [Malinin et al., 
1980]. In all these early investigations, the radiation was 
extracted through relatively small windows in the discharge 
vessels.  

Review of literature for several years, atmospheric non-
thermal plasmas have been studied by various research 
groups in context with their applications of excimer 
synthesis in working media of rare gas and their halides. 
Besides the use of DBD technology for excimer formation, 
in the beginning of 21

st 
century, VUV/UV source based on 

excimer formation pumped by micro hollow cathodes 
discharge [Kurnczi et al., 1999; Kurnczi and Becker, 2000] 
were investigated. Schoenbach and his coworkers 
investigated MHCD technology for excimer synthesis and 
efforts were made towards the parallel operation of MHCD 
discharge and their fabrication in semiconductor 
[Schoenbach et al., 1997; Habachi and Schoenbach, 1997; 
Schoenbach and Stark, 1998; Becker et al., 2006]. A 
special emphasis was laid on spectroscopic studies of 
plasmas used as a source of noncoherent vacuum 
ultraviolet radiation such as rare excimer emission, and 
atomic and molecular emission from plasmas in admixture 
of rare gases and molecular gases. 

Barrientos et al. [2006] carried out analysis and electrical 
modeling of cylindrical DBD reactor configuration at 
different operating frequencies to achieve better 
performance by exciting DBD during active phase of micro 
discharge. Moreover, in electrical equivalent model, they 
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considered the gas gap capacitance as a variable 
capacitor in the model to represent the gap dynamic 
behavior due to changeable ionization of gas inside the 
reactor. 

Parousis et al. [2006] conducted electrical comparative 
study of two atmospheric coaxial DBD reactors operating 
at high gas flow, conceived for surface treatment 
applications. Both the reactor was driven by a power 
generator delivering quasi-sinusoidal waveforms in 100-
160 kHz. The influence of gas flow value and of the input 
power on the electrical operation of these systems was 
also investigated.  

MATERIAL AND METHOD  

Since
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given as: 
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The energy gained by an electron in traversing a distance 

l  must be equal to ionization energy of the gas. Hence, 

 

Substituting l  from (3.4) into (3.3)  

 

But,  is inversely proportional to the pressure at constant 
temperature. Therefore, 

 

  

The constant 1A
 and 1B

 are the properties of gases that 
have been found to be relatively constant for a given gas 
over a range of field and pressure. 

CONCLUSION 

 Cold plasmas can be produced by a variety of electrical 
discharges such as the low pressure glow discharges or at 
atmospheric pressure by corona discharges, dielectric 
barrier discharges, micro hollow cathode discharges, 
atmospheric pressure plasma jet, one atmospheric uniform 
glow discharges, plasma needle, rf and microwave 
discharge, and gliding arc discharge. All these cold plasma 
generation schemes have different structures, power 
supply, working conditions and show variable suitability 
and applicability in several diverse areas. All the cold 
plasma generation schemes are not suited for surface 
treatment in the textile and biomedical engineering. A brief 
description of the non-thermal plasma generation schemes 
which are most suited in textile surface processing has 
been provided here.  

There are several constraints for a technique to be 
preferred over the other in surface modification. The 
process parameters, appropriate choice of gas, operating 
conditions along with plasma parameters decide the 
suitability of an atmospheric cold plasma source for a 
particular application. Cold plasma sources used in surface 
treatment must have a sufficiently high electron number 
density to provide a useful flux of active species but not so 
high or energetic as to damage the material treated. These 
constraints rule out dark discharges other than coronas for 
most applications because of their low production rate of 
active species; and arc or torch plasma which have power 
densities and active species flux intensities high enough to 
damage the exposed material. Glow discharge plasmas 
whether operated at 1 atm or under vacuum, possess the 
appropriate density and active species flux for nearly all 
plasma surface treatment applications. 
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LIMITATIONS 

Low pressure glow discharge plasma is sustained between 
two electrodes extending into a nearly evacuated glass 
tube. It is produced at reduced pressure and assures the 
highest possible uniformity of any plasma treatment. The 
ignition is brought about by a small fraction of charged 
particles always present in the gas. Accelerated by the 
applied voltage, their subsequent collision processes 
cause an avalanche-like increase in the number of charge 
carriers. If the discharge current generated by this 
avalanche effect in a glow discharge is increased by 
applying even higher voltages to the electrodes, different 
types of discharges and plasmas can be obtained, 
depending on the applied voltage and current.  

Glow discharge plasmas [Liston, 1989; Roth, 1995; 
Zuchairah, 1997; John, 2005] are of great interest in 
fundamental research such as in the microelectronic 
industry and material technology but have only limited 
applicability in the textile sector. Although with glow 
discharges, it is possible in a well controlled and 
reproducible way to clean, activate, etch or otherwise 
modify the surfaces of plastic, metal or ceramic materials 
to improve their bonding capabilities or to acquire totally 
new surface properties; still the glow discharge plasmas 
have not yet been able to get a foothold in the textile 
processing sector because of their fundamental 
incompatibility and several serious drawbacks. 
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