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1. INTRODUCTION

The goals of this paper are to introduce the Adaptive
Security Infrastructure concept, discuss issues of
assurance and logical formalization, and state some
tentative definitions and theorems.

The term “adaptive security” is intended to indicate
that security policies and mechanisms can change in
some automated or semi-automated fashion in
response to events. Of course, adaptation is a matter
of degree; all security architectures and devices are
adaptive to some degree.

The need (or “use”; of course, as in many such
technological “advances”, sometimes it is a case of
“invention is the mother of necessity” instead of the
other way round) for (more adaptive) adaptive security
stems from two considerations: short term and long
term:

1. standard “static” security architectures do not
cope well with rapidly changing security environments,
including physical parameters, threats, attacks,
policies, and mission goals.

2. At the other end of the spectrum, systems designed
for extended many-decade life cannot predict and
handle all future threats and attacks by ab initio built-in
non-flexible mechanisms.

Appropriate adaptive architectures and mechanisms
should be chosen according to which aspects of the
shortterm or long-term need are being addressed.

The term “infrastructure” was added on to “adaptive
security”, obtaining Adaptive Security Infrastructure
(ASI), in order to indicate the approach that sees
adaptive security as an integral, fundamental,
functional component underlying any system, rather
than an ill- (or nil-) structured collection of security
devices.

While this need is becoming increasingly recognized —
one could even say that over the last few years there

has been a paradigm shift toward adaptivity —
systems are still being specified, designed, and built
without a good method for architecting system-wide
adaptive security mechanisms.

Much work is currently being focused on detailed
aspects of the related fields of intrusion detection,
sensor networks, architectures, and security policies.
Much less work is devoted towards putting together
those piecesl.

In particular, there does not appear to be a currently
accepted good method for gaining confidence that
the mechanisms to be employed will work together to
deliver what, and only what, is needed. The hard part
is “only” to decide what is wrong (security-wise) with
the current state of affairs, what to do about it, and
how to do that, with the resources available. Without
a system-wide perspective, mechanisms can interfere
with each other, be counterproductive, and create
new vulnerabilities. Indeed, without the assurance
that comes from rigorous specification leading to an
enhanced likelihood of real verification, the cure may
be worse than the disease.

Perhaps reflecting the author’s personal bias, the first
step toward true assurance requires some
formalization of an ASI that could, eventually lead to
the verification that proposed adaptive security
mechanisms will perform as hoped (specified).

Enough about the need for adaptive security and
formalization. In any case, we hope to show that
there are some interesting logical questions relating
to ASIs that have not really been addressed until
now?2. It is a hope of this workshop to help remedy
that.

2. COMPONENTS OF AN ASI

In order to be able to satisfy the stated goals, i.e., to
coordinate detection of security-relevant input,
security policy, user input, analysis, and then be able
to formulate and execute a response, if needed, a
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natural approach is to isolate the three conceptual
components of sensor, analysis, and response.

Taking this approach to the extreme, one can imagine
a system which is constantly monitoring, analyzing,
and responding, in order to maintain security invariants
or to evolve the system to satisfy new security
properties, taking into account current security policy,
severity of environmental effects, temporal and
geographic aspects of attacks and responses.

The skeptical reader may be wondering how we can
hope to prove anything about such a complicated
system, when we can barely prove the most
rudimentary security properties of the most
rudimentary devices and mechanisms? The answer is
hierarchy! In other words, assuming the building
blocks (protocols, algorithms, devices, interfaces) work
as advertised, how do they function together? What
properties need to be defined in order to even
formulate  theorems?  What properties  must
components and interfaces have in order that their
cooperative effect satisfies some desired property?

3. FORMALIZATION:
ISSUES

PRINCIPLES AND

What kind of “formalization” are we interested in?
Some vague basic principles:

1. Use a mathematical logical framework
2. Abstract from realistic scenarios

3. Don’t be concerned with usability or current
technology (of course, at a deeper level, we recognize
that current technology has an undeniable, if
unmeasurable, influence on our imagination)

4. Long term goal should be a common, uniform, inter-
interpretable emantics to allow rigorous specifications
and verifications of architectures, properties, and
capabilities that can connect policy, detection,
analysis, and response.

The basic assumption:

e ASI exists in a temporal and spatial world. If
we accept the temporal and distributed nature
of the whole system in its full generality, we
get arbitrary architectural structures (patterns
of connectivity, e.g. generalized networks)
existing within the system and the ASI, and
these structures may be dynamically
changing. Any aspect of policy, specification,
detection, analysis, or response can be
considered in a version relativized to any
definable structure. We call this the Pervasive
Hierarchy Assumption (PHA).

The following research issues may appear to be rather
grandiose in scope. Of course, they are, but part of the

fun is to break them up into smaller bite-size, or at
least meal-size, chunks.

1. What are the appropriate semantics of a dynamic,
adaptive security policy, and how should that be
specified?

2. How should we take into account the global-local
nature of all components of an ASI according to the
PHA?

3. How should we specify the “security-relevant
resources” available so that at any time the analyzer
can choose an appropriate response?

4. How do we specify the capabilities of responses
(including trade-offs?)

5. How should we unify the temporal-spatial
reasoning aspects?

6. What are the decidability or complexity issues in
such a system?

7. What is the role of "approximate security”?
3.1 Research Issues: Spatial

Some of the interesting research issues pertaining to
the spatial dimension are:

1. Specification of hierarchical architectures

2. Central (local) and distributed (global) detection,
analysis, and response coordination

3. Smooth transition between hierarchies
4. Testability of policy satisfaction

5. Enforceability of response

3.2 Research Issues: Temporal

Some research issues pertaining to the temporal
dimension are:

1. Duration of response
2. Synchronization

3. Relative speeds of changing environment,
detection, analysis, communication, response

4. Incorporation of time in policy
5. Acknowledgments, success reports
4. ADAPTIVE SECURITY POLICY

The goal for specifying adaptive security is twofold:
to provide an umbrella guide for deciding if future
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events, actions, or responses are to be permitted
under current policy; and to allow new security goals to
be stated, in order to initiate system responses to
enforce that policy, if necessary.

For example, we want to be able to reason about
policy change within the context of larger policy or
policy hierarchy5. We want to be able to test, prove,
and implement security policies. We also want to be
able to analyze combinations of security policies, for
example, if the union of two security policies contains
a contradiction.

We have used the term “security policy” without
definition until now, which is dangerous since it might
mean a lot of different things to different people, or to
the same person at different times (as in the case of
the author.) But what we mean here and now can be
stated intuitively as follows:

e a security policy is (a specification of) what is
allowed.

More precisely, in purely semantic terms, a security
policy is a set of computer systems, namely those
computer systems that satisfy that policy. Thus, if a
computer system is identified with a set of computation
sequences (the set of its permitted computation
sequences), then a security policy is a family of sets of
computation sequences. It is hard to get more general
than that6. The general definition can be refined a bit
by defining a primitive security policy to be a set of
computations (so , e.g. “non-interference” or “non-
deducibility” are not primitive), and an nforceable
security policy to be a primitive policy that can be
monitored.

Exactly which of these security policies are “static” and
which are adaptive (or dynamic, if you prefer), is not a
question with an objective answer.

However, as an example of a simple adaptive policy
consider the following:

e System initially satisfies policy P1

e At the first occurrence of condition C, system
switches to policy P2.

So this immediately raises the issue: what does
satisfying a policy P in an interval (from one time/event
tl to another time/event t2) mean?

Answer?: non-contradicting the policy, i.e., that there is
some continuation of the computation, or in the case of
non-primitive policies, some enlargement of the set of
computations (within some larger context of admissible
computations), that explicitly satisfies the policy.

If we represent the above situation by
{F1; ¢ — Pa}then we can easily generalize the notation
to, for example:

1.
(PC— P1.Cy — Py, ..., ',
Policies

— Fu) Branching

o, (FiC1— (P1iC = Pa)) compound  Policies
with the obvious intended meanings.

4.1 Incremental Policy

An incremental policy change is when we know what
aspect we want to change, but don’t know or don’t
care about the rest of the policy as expressed in its
complete system-wide specification. For example,
changing one user’s access rights could/should be
expressible as an increment affecting only that user.
This raises the question of dependencies among
policies that may appear to be local: perhaps the
change to one user's access rights, via some
admissible interaction with other users, changes
those other users’ rights as well.

An increment can be a “weakening” (allowing more

computations) represented by set union of the
previous policy with the new policy, or a
“strengthening” (allowing fewer computations)

represented by set intersection of the previous policy
with the new policy.

A policy increment can be indicated by:

(P1C — (+F1—F2)). where Py; P, are themselves
policies, meaning: strengthen by P, and then weaken
by P,. Such an increment could be a complex
combination of strengthenings and weakenings.

4.2 Local Policy

Let H be a hierarchy description, A an ASI
specification (as opposed to an individual
instantiation), and P a policy. Intuitively, we want

e P is local with respect to H in A to mean
something like

e the satisfaction of P in A is dependent only
on the satisfaction of some (perhaps other,
“test”) policy in all subsystems satisfying H.

In certain situations we may want to define locality
differently, by playing with the quantifiers and saying

1. “For all instantiations of A there is a test policy for
P such that ...” or
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2. “There is a test policy for P such that for all
instantiations of A ...” or

3. “... in some subsystems satisfying H”

5.  SPECIFICATION, DERIVATION,
VERIFICATION OF RESPONSE

AND

One of the more challenging questions is how to
specify and reason about responses, their relation to
resources, and their capabilities. As examples, in
current 2004 technology, some kinds of (defensive)
responses that would be appropriate for certain
security-relevant tasks include, in random order:

1. allocate resources (e.g. power; turning devices on
or off)

N

. adjust routing (include or exclude nodes)

3. change access rights

N

. change crypto algorithms, keys, protocols

[

. change sensor networks
6. change auditing
7. change strength of authentication

8. adjust intrusion detection system settings (altering
the false positive/negative ratio)

9. install patches
10. destroy data or devices
11. install new hardware or software

In the general formal context of an ASI we can define

a ‘“response” to be simply a distributed
program/algorithm running concurrently with the
ongoing ASI and system operation. Of course,

intuitively, common responses have more specific
properties, like changing the state and terminating.

In order to incorporate into a formal
framework, we need to

responses

1. Specify and evaluate responsive resources
¢ including communication channels, if needed

e and including current (and projected) strength
and location

2. Coordinate response with analysis
3. Plan appropriate action in time and space; consider

temporary and local “fixes” while long-term global
solution-response is being worked on

6. DETECTION AND ANALYSIS

The detection and analysis components are very
closely related. Typical detection data and
mechanisms currently employed include:

1. intrusion detection methods of various kinds (e.g.
signature and anomaly)

2. network statistics

3. system usage statistics

4. insider threat statistics

5. electronic background data

Who knows what other kinds of environmental
information may be useful in the future? In
coordinating this information, lessons from the field
of sensor networks are very relevant here.
Obviously, the possible connection between the
nature of data collected, the nature of the policy
implemented, and the nature of the analysis engine,
and how these connections themselves can be made
adaptive, is a wide open question.

7. OTHER TOPICS

Other issues that could easily be relevant to the
formalization of an ASI are

1. Approximate security, that is:

e How to specify achievable security goals

e Allow statistical properties in security policies
2. Game-theoretic view, that is:

e Consider adaptive security to be a game
between the environment and the ASI

e The goal is to (assume minimal restriction on
the environment and) design the ASI so the
adversary (environment) does not have a
winning strategy

8. FUTURE THEOREM

A typical theorem to be proved in some distant future
verification of an ASI could look like:

Theorem:
1. For any system S implementing the specification S
2. for any ASI A implementing the specification A

3. for any adaptive security policy P of type P
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4. for any environment E satisfying conditions E:
S + A satisfies P in E.

The ASI architect’s problem: Given E, P, and S, find A,
as above. As E gets more “realistic’, P has to get
weaker in order for there to be any hope of finding an
appropriate A. This weakening can be in the temporal
axis (allow for longer “lapse” of security) or the
approximation axis (allow for less rigorous security
conditions.)
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