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1. INTRODUCTION  

The goals of this paper are to introduce the Adaptive 
Security Infrastructure concept, discuss issues of 
assurance and logical formalization, and state some 
tentative definitions and theorems. 

The term “adaptive security” is intended to indicate 
that security policies and mechanisms can change in 
some automated or semi-automated fashion in 
response to events. Of course, adaptation is a matter 
of degree; all security architectures and devices are 
adaptive to some degree. 

The need (or “use”; of course, as in many such 
technological “advances”, sometimes it is a case of 
“invention is the mother of necessity” instead of the 
other way round) for (more adaptive) adaptive security 
stems from two considerations: short term and long 
term: 

1. standard “static” security architectures do not 
cope well with rapidly changing security environments, 
including physical parameters, threats, attacks, 
policies, and mission goals. 

2. At the other end of the spectrum, systems designed 
for extended many-decade life cannot predict and 
handle all future threats and attacks by ab initio built-in 
non-flexible mechanisms. 

Appropriate adaptive architectures and mechanisms 
should be chosen according to which aspects of the 
shortterm or long-term need are being addressed. 

The term “infrastructure” was added on to “adaptive 
security”, obtaining Adaptive Security Infrastructure 
(ASI), in order to indicate the approach that sees 
adaptive security as an integral, fundamental, 
functional component underlying any system, rather 
than an ill- (or nil-) structured collection of security 
devices. 

While this need is becoming increasingly recognized – 
one could even say that over the last few years there 

has been a paradigm shift toward adaptivity – 
systems are still being specified, designed, and built 
without a good method for architecting system-wide 
adaptive security mechanisms. 

Much work is currently being focused on detailed 
aspects of the related fields of intrusion detection, 
sensor networks, architectures, and security policies. 
Much less work is devoted towards putting together 
those pieces1. 

In particular, there does not appear to be a currently 
accepted good method for gaining confidence that 
the mechanisms to be employed will work together to 
deliver what, and only what, is needed. The hard part 
is “only” to decide what is wrong (security-wise) with 
the current state of affairs, what to do about it, and 
how to do that, with the resources available. Without 
a system-wide perspective, mechanisms can interfere 
with each other, be counterproductive, and create 
new vulnerabilities. Indeed, without the assurance 
that comes from rigorous specification leading to an 
enhanced likelihood of real verification, the cure may 
be worse than the disease. 

Perhaps reflecting the author’s personal bias, the first 
step toward true assurance requires some 
formalization of an ASI that could, eventually lead to 
the verification that proposed adaptive security 
mechanisms will perform as hoped (specified). 

Enough about the need for adaptive security and 
formalization. In any case, we hope to show that 
there are some interesting logical questions relating 
to ASIs that have not really been addressed until 
now2. It is a hope of this workshop to help remedy 
that. 

2. COMPONENTS OF AN ASI 

In order to be able to satisfy the stated goals, i.e., to 
coordinate detection of security-relevant input, 
security policy, user input, analysis, and then be able 
to formulate and execute a response, if needed, a 



 

 

Ruchin Jain 

w
w

w
.i

g
n

it
e

d
.i
n

 

2 

 

 Introduction to Logical Fundamentals of a Security Infrastructure 

natural approach is to isolate the three conceptual 
components of sensor, analysis, and response. 

Taking this approach to the extreme, one can imagine 
a system which is constantly monitoring, analyzing, 
and responding, in order to maintain security invariants 
or to evolve the system to satisfy new security 
properties, taking into account current security policy, 
severity of environmental effects, temporal and 
geographic aspects of attacks and responses. 

The skeptical reader may be wondering how we can 
hope to prove anything about such a complicated 
system, when we can barely prove the most 
rudimentary security properties of the most 
rudimentary devices and mechanisms? The answer is 
hierarchy! In other words, assuming the building 
blocks (protocols, algorithms, devices, interfaces) work 
as advertised, how do they function together? What 
properties need to be defined in order to even 
formulate theorems? What properties must 
components and interfaces have in order that their 
cooperative effect satisfies some desired property? 

3. FORMALIZATION: PRINCIPLES AND 
ISSUES 

What kind of “formalization” are we interested in? 
Some vague basic principles: 

1. Use a mathematical logical framework 

2. Abstract from realistic scenarios 

3. Don’t be concerned with usability or current 
technology (of course, at a deeper level, we recognize 
that current technology has an undeniable, if 
unmeasurable, influence on our imagination) 

4. Long term goal should be a common, uniform, inter-
interpretable  emantics to allow rigorous specifications 
and verifications of architectures, properties, and 
capabilities that can connect policy, detection, 
analysis, and response. 

The basic assumption: 

 ASI exists in a temporal and spatial world. If 
we accept the temporal and distributed nature 
of the whole system in its full generality, we 
get arbitrary architectural structures (patterns 
of connectivity, e.g. generalized networks) 
existing within the system and the ASI, and 
these structures may be dynamically 
changing. Any aspect of policy, specification, 
detection, analysis, or response can be 
considered in a version relativized to any 
definable structure. We call this the Pervasive 
Hierarchy Assumption (PHA).  

The following research issues may appear to be rather 
grandiose in scope. Of course, they are, but part of the 

fun is to break them up into smaller bite-size, or at 
least meal-size, chunks. 

1. What are the appropriate semantics of a dynamic, 
adaptive security policy, and how should that be 
specified? 

2. How should we take into account the global-local 
nature of all components of an ASI according to the 
PHA? 

3. How should we specify the ”security-relevant 
resources” available so that at any time the analyzer 
can choose an appropriate response? 

4. How do we specify the capabilities of responses 
(including trade-offs?) 

5. How should we unify the temporal-spatial 
reasoning aspects? 

6. What are the decidability or complexity issues in 
such a system? 

7. What is the role of ”approximate security”? 

3.1 Research Issues: Spatial 

Some of the interesting research issues pertaining to 
the spatial dimension are: 

1. Specification of hierarchical architectures 

2. Central (local) and distributed (global) detection, 
analysis, and response coordination 

3. Smooth transition between hierarchies 

4. Testability of policy satisfaction 

5. Enforceability of response 

3.2 Research Issues: Temporal 

Some research issues pertaining to the temporal 
dimension are: 

1. Duration of response 

2. Synchronization 

3. Relative speeds of changing environment, 
detection, analysis, communication, response 

4. Incorporation of time in policy 

5. Acknowledgments, success reports 

4. ADAPTIVE SECURITY POLICY 

The goal for specifying adaptive security is twofold: 
to provide an umbrella guide for deciding if future 
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events, actions, or responses are to be permitted 
under current policy; and to allow new security goals to 
be stated, in order to initiate system responses to 
enforce that policy, if necessary. 

For example, we want to be able to reason about 
policy change within the context of larger policy or 
policy hierarchy5. We want to be able to test, prove, 
and implement security policies. We also want to be 
able to analyze combinations of security policies, for 
example, if the union of two security policies contains 
a contradiction. 

We have used the term “security policy” without 
definition until now, which is dangerous since it might 
mean a lot of different things to different people, or to 
the same person at different times (as in the case of 
the author.) But what we mean here and now can be 
stated intuitively as follows: 

 a security policy is (a specification of) what is 
allowed.  

More precisely, in purely semantic terms, a security 
policy is a set of computer systems, namely those 
computer systems that satisfy that policy. Thus, if a 
computer system is identified with a set of computation 
sequences (the set of its permitted computation 
sequences), then a security policy is a family of sets of 
computation sequences. It is hard to get more general 
than that6. The general definition can be refined a bit 
by defining a primitive security policy to be a set of 
computations (so , e.g. “non-interference” or “non-
deducibility” are not primitive), and an nforceable 
security policy to be a primitive policy that can be 
monitored. 

Exactly which of these security policies are “static” and 
which are adaptive (or dynamic, if you prefer), is not a 
question with an objective answer.  

However, as an example of a simple adaptive policy 
consider the following: 

 System initially satisfies policy P1 

 At the first occurrence of condition C, system 
switches to policy P2.  

So this immediately raises the issue: what does 
satisfying a policy P in an interval (from one time/event 
t1 to another time/event t2) mean? 

Answer?: non-contradicting the policy, i.e., that there is 
some continuation of the computation, or in the case of 
non-primitive policies, some enlargement of the set of 
computations (within some larger context of admissible 
computations), that explicitly satisfies the policy. 

If we represent the above situation by 

then we can easily generalize the notation 
to, for example: 

1. 

Branching 
Policies 

2.  Compound Policies 
with the obvious intended meanings. 

4.1 Incremental Policy 

An incremental policy change is when we know what 
aspect we want to change, but don’t know or don’t 
care about the rest of the policy as expressed in its 
complete system-wide specification. For example, 
changing one user’s access rights could/should be 
expressible as an increment affecting only that user. 
This raises the question of dependencies among 
policies that may appear to be local: perhaps the 
change to one user’s access rights, via some 
admissible interaction with other users, changes 
those other users’ rights as well. 

An increment can be a “weakening” (allowing more 
computations) represented by set union of the 
previous policy with the new policy, or a 
“strengthening” (allowing fewer computations) 
represented by set intersection of the previous policy 
with the new policy. 

A policy increment can be indicated by: 

 where P1; P2 are themselves 
policies, meaning: strengthen by P1 and then weaken 
by P2. Such an increment could be a complex 
combination of strengthenings and weakenings. 

4.2 Local Policy 

Let H be a hierarchy description, A an ASI 
specification (as opposed to an individual 
instantiation), and P a policy. Intuitively, we want 

 P is local with respect to H in A to mean 
something like 

 the satisfaction of P in A is dependent  only 
on the satisfaction of some (perhaps other, 
“test”) policy in all subsystems satisfying H. 

In certain situations we may want to define locality 
differently, by playing with the quantifiers and saying 

1. “For all instantiations of A there is a test policy for 
P such that ...” or 
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2. “There is a test policy for P such that for all 
instantiations of A ...” or 

3. “... in some subsystems satisfying H” 

5. SPECIFICATION, DERIVATION, AND 
VERIFICATION OF RESPONSE 

One of the more challenging questions is how to 
specify and reason about responses, their relation to 
resources, and their capabilities. As examples, in 
current 2004 technology, some kinds of (defensive) 
responses that would be appropriate for certain 
security-relevant tasks include, in random order: 

1. allocate resources (e.g. power; turning devices on 
or off) 

2. adjust routing (include or exclude nodes) 

3. change access rights 

4. change crypto algorithms, keys, protocols 

5. change sensor networks 

6. change auditing 

7. change strength of authentication 

8. adjust intrusion detection system settings (altering 
the false positive/negative ratio) 

9. install patches 

10. destroy data or devices 

11. install new hardware or software 

In the general formal context of an ASI we can define 
a “response” to be simply a distributed 
program/algorithm running concurrently with the 
ongoing ASI and system operation. Of course, 
intuitively, common responses have more specific 
properties, like changing the state and terminating. 

In order to incorporate responses into a formal 
framework, we need to 

1. Specify and evaluate responsive resources 

 including communication channels, if needed 

 and including current (and projected) strength 
and location 

2. Coordinate response with analysis 

3. Plan appropriate action in time and space; consider 
temporary and local “fixes” while long-term global 
solution-response is being worked on 

6. DETECTION AND ANALYSIS 

The detection and analysis components are very 
closely related. Typical detection data and 
mechanisms currently employed include: 

1. intrusion detection methods of various kinds (e.g. 
signature and anomaly) 

2. network statistics 

3. system usage statistics 

4. insider threat statistics 

5. electronic background data 

Who knows what other kinds of environmental 
information may be useful in the future? In 
coordinating this information, lessons from the field 
of sensor networks are very relevant here. 
Obviously, the possible connection between the 
nature of data collected, the nature of the policy 
implemented, and the nature of the analysis engine, 
and how these connections themselves can be made 
adaptive, is a wide open question. 

7. OTHER TOPICS 

Other issues that could easily be relevant to the 
formalization of an ASI are 

1. Approximate security, that is: 

 How to specify achievable security goals 

 Allow statistical properties in security policies 

2. Game-theoretic view, that is: 

 Consider adaptive security to be a game 
between the environment and the ASI 

 The goal is to (assume minimal restriction on 
the environment and) design the ASI so the 
adversary (environment) does not have a 
winning strategy 

8. FUTURE THEOREM 

A typical theorem to be proved in some distant future 
verification of an ASI could look like: 

Theorem: 

1. For any system S implementing the specification S 

2. for any ASI A implementing the specification A 

3. for any adaptive security policy P of type P 
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4. for any environment E satisfying conditions E: 

S + A satisfies P in E. 

The ASI architect’s problem: Given E, P, and S, find A, 
as above. As E gets more “realistic”, P has to get 
weaker in order for there to be any hope of finding an 
appropriate A. This weakening can be in the temporal 
axis (allow for longer “lapse” of security) or the 
approximation axis (allow for less rigorous security 
conditions.) 
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